Suppr超能文献

一种极具疼痛性毒液的多种作用机制。

Multiple mechanisms of action for an extremely painful venom.

作者信息

Borjon Lydia J, de Assis Ferreira Luana C, Trinidad Jonathan C, Šašić Sunčica, Hohmann Andrea G, Tracey W Daniel

机构信息

Department of Biology, Indiana University, Bloomington, IN 47405, USA; Gill Institute for Neuroscience, Indiana University, Bloomington, IN 47405, USA.

Gill Institute for Neuroscience, Indiana University, Bloomington, IN 47405, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA.

出版信息

Curr Biol. 2025 Jan 20;35(2):444-453.e4. doi: 10.1016/j.cub.2024.11.070. Epub 2025 Jan 6.

Abstract

Evolutionary arms races can lead to extremely specific and effective defense mechanisms, including venoms that deter predators by targeting nociceptive (pain-sensing) pathways. The venom of velvet ants (Hymenoptera: Mutillidae) is notoriously painful. It has been described as "Explosive and long lasting, you sound insane as you scream. Hot oil from the deep fryer spilling over your entire hand." The effectiveness of the velvet ant sting against potential predators has been shown across vertebrate orders, including mammals, amphibians, reptiles, and birds. This leads to the hypothesis that velvet ant venom targets a conserved nociception mechanism, which we sought to uncover using Drosophila melanogaster as a model system. Drosophila larvae have peripheral sensory neurons that sense potentially damaging (noxious) stimuli such as high temperature, harsh mechanical touch, and noxious chemicals. They share features with vertebrate nociceptors, including conserved sensory receptor channels. We found that velvet ant venom strongly activated Drosophila nociceptors through heteromeric Pickpocket/Balboa (Ppk/Bba) ion channels, through a single venom peptide, Do6a. Drosophila Ppk/Bba is homologous to mammalian acid-sensing ion channels (ASICs). However, Do6a did not produce behavioral signs of nociception in mice, which was instead triggered by other venom peptides that are non-specific and less potent on Drosophila nociceptors. This suggests that Do6a has an insect-specific function. In fact, we further demonstrated that the velvet ant's sting produced aversive behavior in a predatory praying mantis. Together, our results indicate that velvet ant venom acts through different molecular mechanisms in vertebrates and invertebrates.

摘要

进化军备竞赛可能导致极其特异且有效的防御机制,包括通过靶向伤害感受(疼痛感知)通路来威慑捕食者的毒液。绒蚁(膜翅目:蚁蜂科)的毒液以剧痛著称。它被描述为“如爆炸般强烈且持久,你尖叫时听起来像疯了一样。就像炸锅里的热油泼满了你的整只手。” 绒蚁叮咬对包括哺乳动物、两栖动物、爬行动物和鸟类在内的各脊椎动物类群的潜在捕食者都显示出有效性。这引发了一个假设,即绒蚁毒液靶向一种保守的伤害感受机制,我们试图以黑腹果蝇作为模型系统来揭示这一机制。果蝇幼虫具有外周感觉神经元,可感知潜在的有害(伤害性)刺激,如高温、强烈的机械触摸和有害化学物质。它们与脊椎动物的伤害感受器具有共同特征,包括保守的感觉受体通道。我们发现绒蚁毒液通过一种单一的毒液肽Do6a,通过异源三聚体Pickpocket/Balboa(Ppk/Bba)离子通道强烈激活果蝇的伤害感受器。果蝇的Ppk/Bba与哺乳动物的酸敏感离子通道(ASICs)同源。然而,Do6a在小鼠中并未产生伤害感受的行为迹象,相反,其他对果蝇伤害感受器非特异性且效力较弱的毒液肽会引发这种行为迹象。这表明Do6a具有昆虫特异性功能。事实上,我们进一步证明绒蚁的叮咬会在捕食性螳螂中产生厌恶行为。总之,我们的结果表明绒蚁毒液在脊椎动物和无脊椎动物中通过不同的分子机制起作用。

相似文献

1
Multiple mechanisms of action for an extremely painful venom.一种极具疼痛性毒液的多种作用机制。
Curr Biol. 2025 Jan 20;35(2):444-453.e4. doi: 10.1016/j.cub.2024.11.070. Epub 2025 Jan 6.

本文引用的文献

2
Nociception in fruit fly larvae.果蝇幼虫的伤害感受
Front Pain Res (Lausanne). 2023 Mar 17;4:1076017. doi: 10.3389/fpain.2023.1076017. eCollection 2023.
6
Evolution of the Insect PPK Gene Family.昆虫 PPK 基因家族的进化。
Genome Biol Evol. 2021 Sep 1;13(9). doi: 10.1093/gbe/evab185.
8
Neural Design Principles for Subjective Experience: Implications for Insects.主观体验的神经设计原则:对昆虫的启示
Front Behav Neurosci. 2021 May 5;15:658037. doi: 10.3389/fnbeh.2021.658037. eCollection 2021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验