Suppr超能文献

预测3个月以下患有肠旋转不良的婴儿术后粘连性小肠梗阻:一种随机森林方法。

Predicting postoperative adhesive small bowel obstruction in infants under 3 months with intestinal malrotation: a random forest approach.

作者信息

Chen Pengfei, Xiong Haiyi, Cao Jian, Cui Mengying, Hou Jinfeng, Guo Zhenhua

机构信息

Department of General Surgery and Neonatal Surgery, Liangjiang Wing, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China.

Department of Pediatrics, Women and Children's Hospital of Chongqing Medical University, Department of Pediatrics, Chongqing Health Center for Women and Children, Chongqing, China.

出版信息

J Pediatr (Rio J). 2025 Mar-Apr;101(2):282-289. doi: 10.1016/j.jped.2024.11.011. Epub 2025 Jan 21.

Abstract

OBJECTIVE

This study aimed to develop a predictive model using a random forest algorithm to determine the likelihood of postoperative adhesive small bowel obstruction (ASBO) in infants under 3 months with intestinal malrotation.

METHODS

A machine learning model was used to predict postoperative adhesive small bowel obstruction using comprehensive clinical data extracted from 107 patients with a follow-up of at least 24 months. The Boruta algorithm was used for selecting clinical features, and nested cross-validation tuned and selected hyper-parameters for the random forest model. The model's performance was validated with 1000 bootstrap samples and assessed using receiver operating characteristic (ROC) analysis, the area under the ROC curve (AUC), sensitivity, specificity, precision, and F1 score.

RESULTS

The random forest model demonstrated high diagnostic accuracy with an AUC of 0.960. Significant predictors of ASBO included pre-operative white blood cell count (pre-WBC), mechanical ventilation (MV) duration, surgery duration, and post-operative albumin levels (post-ALB). Partial dependence plots showed non-linear relationships and threshold effects for these variables. The model achieved high sensitivity (0.805) and specificity (0.952), along with excellent precision (0.809) and a robust F1 score (0.799), indicating balanced recall and precision performance.

CONCLUSION

This study presents a machine learning model to accurately predict postoperative ASBO in infants with intestinal malrotation. Demonstrating high accuracy and robustness, this model shows great promise for enhancing clinical decision-making and patient outcomes in pediatric surgery.

摘要

目的

本研究旨在开发一种使用随机森林算法的预测模型,以确定3个月以下患有肠旋转不良的婴儿术后粘连性小肠梗阻(ASBO)的可能性。

方法

使用机器学习模型,利用从107例患者中提取的综合临床数据来预测术后粘连性小肠梗阻,这些患者的随访时间至少为24个月。使用Boruta算法选择临床特征,并通过嵌套交叉验证对随机森林模型的超参数进行调整和选择。该模型的性能通过1000个自助抽样样本进行验证,并使用受试者工作特征(ROC)分析、ROC曲线下面积(AUC)、敏感性、特异性、精确度和F1分数进行评估。

结果

随机森林模型显示出较高的诊断准确性,AUC为0.960。ASBO的显著预测因素包括术前白细胞计数(pre-WBC)、机械通气(MV)持续时间、手术持续时间和术后白蛋白水平(post-ALB)。部分依赖图显示了这些变量的非线性关系和阈值效应。该模型具有较高的敏感性(0.805)和特异性(0.952),以及出色的精确度(0.809)和稳健的F1分数(0.799),表明召回率和精确度表现平衡。

结论

本研究提出了一种机器学习模型,可准确预测患有肠旋转不良的婴儿术后ASBO。该模型具有较高的准确性和稳健性,在改善小儿外科临床决策和患者预后方面显示出巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df57/11889664/d76f1134ae96/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验