Sun Hongjing, Ong Yihong, Kim Michele M, Dimofte Andreea, Singhal Sunil, Cengel Keith A, Yodh Arjun G, Zhu Timothy C
Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA.
Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
Antioxidants (Basel). 2024 Nov 22;13(12):1436. doi: 10.3390/antiox13121436.
Photodynamic therapy (PDT) relies on the interactions between light, photosensitizers, and tissue oxygen to produce cytotoxic reactive oxygen species (ROS), primarily singlet oxygen (O) through Type II photochemical reactions, along with superoxide anion radicals (O), hydrogen peroxide (HO), and hydroxyl radicals (OH) through Type I mechanisms. Accurate dosimetry, accounting for all three components, is crucial for predicting and optimizing PDT outcomes. Conventional dosimetry tracks only light fluence rate and photosensitizer concentration, neglecting the role of tissue oxygenation. Reactive oxygen species explicit dosimetry (ROSED) quantifies the reacted oxygen species concentration ([ROS]) by explicit measurements of light fluence (rate), photosensitizer concentration, and tissue oxygen concentration. Here we determine tissue oxygenation from non-invasive diffuse correlation spectroscopy (DCS) measurement of tumor blood flow using a conversion factor established preclinically. In this study, we have enrolled 24 pleural PDT patients into the study. Of these patients, we are able to obtain data on 20. Explicit dosimetry of light fluence, Photofrin concentration, and tissue oxygenation concentrations were integrated into the ROSED model to calculate [ROS] across multiple sites inside the pleural cavity and among different patients. Large inter- and intra-patient heterogeneities in [ROS] were observed, despite identical 60 J/cm light doses, with mean [ROS] of 0.56 ± 0.26 mM for 13 patients with 21 sites, and [ROS] of 0.48 ± 0.23 mM for 20 patients with 76 sites. This study presented the first comprehensive analysis of clinical ROSED in pleural mesothelioma patients, providing valuable data on future ROSED based pleural PDT that can potentially produce uniform ROS and thus improve the PDT efficacy for Photofrin-mediated pleural PDT.
光动力疗法(PDT)依赖于光、光敏剂和组织氧之间的相互作用,通过II型光化学反应产生细胞毒性活性氧(ROS),主要是单线态氧(O),同时通过I型机制产生超氧阴离子自由基(O)、过氧化氢(HO)和羟基自由基(OH)。考虑到所有三个组成部分的准确剂量测定对于预测和优化PDT结果至关重要。传统的剂量测定仅跟踪光通量率和光敏剂浓度,而忽略了组织氧合的作用。活性氧明确剂量测定法(ROSED)通过明确测量光通量(率)、光敏剂浓度和组织氧浓度来量化反应后的氧物种浓度([ROS])。在这里,我们使用临床前建立的转换因子,通过对肿瘤血流进行非侵入性扩散相关光谱(DCS)测量来确定组织氧合。在本研究中,我们招募了24名接受胸膜PDT的患者。在这些患者中,我们能够获得20名患者的数据。将光通量、卟啉浓度和组织氧合浓度的明确剂量测定整合到ROSED模型中,以计算胸腔内多个部位以及不同患者之间的[ROS]。尽管光剂量均为60 J/cm,但观察到患者之间和患者内部的[ROS]存在很大差异,13名患者21个部位的平均[ROS]为0.56±0.26 mM,20名患者76个部位的[ROS]为0.48±0.23 mM。本研究首次对胸膜间皮瘤患者的临床ROSED进行了全面分析,为未来基于ROSED的胸膜PDT提供了有价值的数据,这可能会产生均匀的ROS,从而提高卟啉介导的胸膜PDT的疗效。