Suppr超能文献

宫颈细胞学中嗜碱性浓集细胞群的定量结构分析:克服诊断陷阱

Quantitative Structural Analysis of Hyperchromatic Crowded Cell Groups in Cervical Cytology: Overcoming Diagnostic Pitfalls.

作者信息

Tanaka Shinichi, Yamamoto Tamami, Teramoto Norihiro

机构信息

Department of Medical Technology, Kawasaki University of Medical Welfare, Kurashiki 701-0193, Japan.

Department of Clinical Laboratory, Shikoku Cancer Center, Matsuyama 791-0245, Japan.

出版信息

Cancers (Basel). 2024 Dec 21;16(24):4258. doi: 10.3390/cancers16244258.

Abstract

BACKGROUND

The diagnostic challenges presented by hyperchromatic crowded cell groups (HCGs) in cervical cytology often result in either overdiagnosis or underdiagnosis due to their densely packed, three-dimensional structures. The objective of this study is to characterize the structural differences among HSIL-HCGs, AGC-HCGs, and NILM-HCGs using quantitative texture analysis metrics, with the aim of facilitating the differentiation of benign from malignant cases.

METHODS

A total of 585 HCGs images were analyzed, with assessments conducted on 8-bit gray-scale value, thickness, skewness, and kurtosis across various groups.

RESULTS

HSIL-HCGs are distinctly classified based on 8-bit gray-scale value. Significant statistical differences were observed in all groups, with HSIL-HCGs exhibiting higher cellular density and cluster thickness compared to NILM and AGC groups. In the AGC group, HCGs shows statistically significant differences in 8-bit gray-scale value compared to NILM-HCGs, but the classification performance by 8-bit gray-scale value is not high because the cell density and thickness are almost similar. These variations reflect the characteristic cellular structures unique to each group and substantiate the potential of 8-bit gray-scale value as an objective diagnostic indicator, especially for HSIL-HCGs.

CONCLUSION

Our findings indicate that the integration of gray-scale-based texture analysis has the potential to improve diagnostic accuracy in cervical cytology and break through current diagnostic limitations in the identification of high-risk lesions.

摘要

背景

宫颈细胞学中核深染拥挤细胞群(HCGs)带来的诊断挑战,常因其密集的三维结构导致过度诊断或诊断不足。本研究的目的是使用定量纹理分析指标来表征高级别鳞状上皮内病变-HCGs(HSIL-HCGs)、非典型腺细胞-HCGs(AGC-HCGs)和无上皮内病变或恶性病变-HCGs(NILM-HCGs)之间的结构差异,以促进良性与恶性病例的鉴别。

方法

共分析了585张HCGs图像,对不同组别的8位灰度值、厚度、偏度和峰度进行评估。

结果

HSIL-HCGs可根据8位灰度值进行明确分类。所有组之间均观察到显著的统计学差异,与NILM组和AGC组相比,HSIL-HCGs表现出更高的细胞密度和簇厚度。在AGC组中,与NILM-HCGs相比,HCGs在8位灰度值上显示出统计学显著差异,但由于细胞密度和厚度几乎相似,8位灰度值的分类性能不高。这些差异反映了每组独特的细胞结构特征,并证实了8位灰度值作为客观诊断指标的潜力,尤其是对于HSIL-HCGs。

结论

我们的研究结果表明,基于灰度的纹理分析的整合有可能提高宫颈细胞学的诊断准确性,并突破当前在识别高危病变方面的诊断局限性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a6b/11674171/bb90ed9b79d3/cancers-16-04258-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验