Suppr超能文献

跨四个不同数据集的睡眠阶段单通道与多通道分类的比较分析

Comparative Analysis of Single-Channel and Multi-Channel Classification of Sleep Stages Across Four Different Data Sets.

作者信息

Zhang Xingjian, He Gewen, Shang Tingyu, Fan Fangfang

机构信息

Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.

Department of Computer Science, Florida State University, Tallahassee, FL 32306, USA.

出版信息

Brain Sci. 2024 Nov 28;14(12):1201. doi: 10.3390/brainsci14121201.

Abstract

: Manually labeling sleep stages is time-consuming and labor-intensive, making automatic sleep staging methods crucial for practical sleep monitoring. While both single- and multi-channel data are commonly used in automatic sleep staging, limited research has adequately investigated the differences in their effectiveness. In this study, four public data sets-Sleep-SC, APPLES, SHHS1, and MrOS1-are utilized, and an advanced hybrid attention neural network composed of a multi-branch convolutional neural network and the multi-head attention mechanism is employed for automatic sleep staging. : The experimental results show that, for sleep staging using 2-5 classes, a combination of single-channel electroencephalography (EEG) and dual-channel electrooculography (EOG) consistently outperforms single-channel EEG with single-channel EOG, which in turn outperforms single-channel EEG or single-channel EOG alone. For instance, for five-class sleep staging using the MrOS1 data set, the combination of single-channel EEG and dual-channel EOG resulted in an accuracy of 87.18%, whereas the combination of single-channel EEG and single-channel EOG yielded an accuracy of 85.77%. In comparison, single-channel EEG alone achieved an accuracy of 85.25% and single-channel EOG alone achieved an accuracy of 83.66%. : This study highlights the significance of combining EEG and EOG signals in automatic sleep staging, while also providing valuable insights for the channel design of portable sleep monitoring devices.

摘要

人工标注睡眠阶段既耗时又费力,这使得自动睡眠分期方法对于实际的睡眠监测至关重要。虽然单通道和多通道数据在自动睡眠分期中都常用,但仅有有限的研究充分探究了它们在有效性方面的差异。在本研究中,使用了四个公共数据集——Sleep-SC、APPLES、SHHS1和MrOS1,并采用了一种由多分支卷积神经网络和多头注意力机制组成的先进混合注意力神经网络进行自动睡眠分期。实验结果表明,对于使用2至5个类别的睡眠分期,单通道脑电图(EEG)和双通道眼电图(EOG)的组合始终优于单通道EEG与单通道EOG的组合,而后者又优于单独的单通道EEG或单通道EOG。例如,对于使用MrOS1数据集的五类睡眠分期,单通道EEG和双通道EOG的组合准确率为87.18%,而单通道EEG和单通道EOG的组合准确率为85.77%。相比之下,单独的单通道EEG准确率为85.25%,单独的单通道EOG准确率为83.66%。本研究突出了在自动睡眠分期中结合EEG和EOG信号的重要性,同时也为便携式睡眠监测设备的通道设计提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9bf/11674470/d763586f2654/brainsci-14-01201-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验