Suppr超能文献

端到端多通道卷积双向长短时记忆网络在自动睡眠分期检测中的应用。

An End-to-End Multi-Channel Convolutional Bi-LSTM Network for Automatic Sleep Stage Detection.

机构信息

School of Electrical Engineering, Kookmin University, Seoul 02707, Republic of Korea.

出版信息

Sensors (Basel). 2023 May 21;23(10):4950. doi: 10.3390/s23104950.

Abstract

Sleep stage detection from polysomnography (PSG) recordings is a widely used method of monitoring sleep quality. Despite significant progress in the development of machine-learning (ML)-based and deep-learning (DL)-based automatic sleep stage detection schemes focusing on single-channel PSG data, such as single-channel electroencephalogram (EEG), electrooculogram (EOG), and electromyogram (EMG), developing a standard model is still an active subject of research. Often, the use of a single source of information suffers from data inefficiency and data-skewed problems. Instead, a multi-channel input-based classifier can mitigate the aforementioned challenges and achieve better performance. However, it requires extensive computational resources to train the model, and, hence, a tradeoff between performance and computational resources cannot be ignored. In this article, we aim to introduce a multi-channel, more specifically a four-channel, convolutional bidirectional long short-term memory (Bi-LSTM) network that can effectively exploit spatiotemporal features of data collected from multiple channels of the PSG recording (e.g., EEG Fpz-Cz, EEG Pz-Oz, EOG, and EMG) for automatic sleep stage detection. First, a dual-channel convolutional Bi-LSTM network module has been designed and pre-trained utilizing data from every two distinct channels of the PSG recording. Subsequently, we have leveraged the concept of transfer learning circuitously and have fused two dual-channel convolutional Bi-LSTM network modules to detect sleep stages. In the dual-channel convolutional Bi-LSTM module, a two-layer convolutional neural network has been utilized to extract spatial features from two channels of the PSG recordings. These extracted spatial features are subsequently coupled and given as input at every level of the Bi-LSTM network to extract and learn rich temporal correlated features. Both Sleep EDF-20 and Sleep EDF-78 (expanded version of Sleep EDF-20) datasets are used in this study to evaluate the result. The model that includes an EEG Fpz-Cz + EOG module and an EEG Fpz-Cz + EMG module can classify sleep stage with the highest value of accuracy (), Kappa (), and (e.g., 91.44%, 0.89, and 88.69%, respectively) on the Sleep EDF-20 dataset. On the other hand, the model consisting of an EEG Fpz-Cz + EMG module and an EEG Pz-Oz + EOG module shows the best performance (e.g., the value of , , and are 90.21%, 0.86, and 87.02%, respectively) compared to other combinations for the Sleep EDF-78 dataset. In addition, a comparative study with respect to other existing literature has been provided and discussed in order to exhibit the efficacy of our proposed model.

摘要

从多导睡眠图 (PSG) 记录中进行睡眠阶段检测是一种广泛使用的监测睡眠质量的方法。尽管基于机器学习 (ML) 和深度学习 (DL) 的自动睡眠阶段检测方案在单通道 PSG 数据(如单通道脑电图 (EEG)、眼电图 (EOG) 和肌电图 (EMG))方面取得了显著进展,但开发标准模型仍然是一个活跃的研究课题。通常,使用单一信息源会受到数据效率和数据倾斜问题的影响。相比之下,基于多通道输入的分类器可以缓解上述挑战并实现更好的性能。然而,训练模型需要大量的计算资源,因此不能忽视性能和计算资源之间的权衡。在本文中,我们旨在引入一种多通道,更具体地说是四通道,卷积双向长短期记忆 (Bi-LSTM) 网络,该网络可以有效地利用从 PSG 记录的多个通道(例如,EEG Fpz-Cz、EEG Pz-Oz、EOG 和 EMG)中收集的数据的时空特征,用于自动睡眠阶段检测。首先,设计了一个双通道卷积 Bi-LSTM 网络模块,并利用 PSG 记录中每两个不同通道的数据进行预训练。随后,我们间接地利用了迁移学习的概念,融合了两个双通道卷积 Bi-LSTM 网络模块来检测睡眠阶段。在双通道卷积 Bi-LSTM 模块中,使用了两层卷积神经网络从 PSG 记录的两个通道中提取空间特征。这些提取的空间特征随后被耦合,并作为输入提供给 Bi-LSTM 网络的每个级别,以提取和学习丰富的时间相关特征。本研究使用了 Sleep EDF-20 和 Sleep EDF-78(Sleep EDF-20 的扩展版本)数据集来评估结果。包含 EEG Fpz-Cz + EOG 模块和 EEG Fpz-Cz + EMG 模块的模型在 Sleep EDF-20 数据集上可以以最高的准确性()、kappa()和(例如,分别为 91.44%、0.89 和 88.69%)分类睡眠阶段。另一方面,由 EEG Fpz-Cz + EMG 模块和 EEG Pz-Oz + EOG 模块组成的模型在 Sleep EDF-78 数据集上与其他组合相比表现出最佳性能(例如,值为 90.21%、0.86 和 87.02%)。此外,还提供并讨论了与其他现有文献的比较研究,以展示我们提出的模型的功效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d48e/10222356/33b0e3ba9842/sensors-23-04950-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验