Suppr超能文献

基于多层邻节点引力和信息熵的关键节点识别方法

Key Node Identification Method Based on Multilayer Neighbor Node Gravity and Information Entropy.

作者信息

Fu Lidong, Ma Xin, Dou Zengfa, Bai Yun, Zhao Xi

机构信息

College of Computer Science and Technology, Xi'an University of Science and Technology, Xi'an 710064, China.

School of Computer and Information Science, Qinhai Institute of Technology, Xining 810016, China.

出版信息

Entropy (Basel). 2024 Nov 30;26(12):1041. doi: 10.3390/e26121041.

Abstract

In the field of complex network analysis, accurately identifying key nodes is crucial for understanding and controlling information propagation. Although several local centrality methods have been proposed, their accuracy may be compromised if interactions between nodes and their neighbors are not fully considered. To address this issue, this paper proposes a key node identification method based on multilayer neighbor node gravity and information entropy (MNNGE). The method works as follows: First, the relative gravity of the nodes is calculated based on their weights. Second, the direct gravity of the nodes is calculated by considering the attributes of neighboring nodes, thus capturing interactions within local triangular structures. Finally, the centrality of the nodes is obtained by aggregating the relative and direct gravity of multilayer neighbor nodes using information entropy. To validate the effectiveness of the MNNGE method, we conducted experiments on various real-world network datasets, using evaluation metrics such as the susceptible-infected-recovered (SIR) model, Kendall τ correlation coefficient, Jaccard similarity coefficient, monotonicity, and complementary cumulative distribution function. Our results demonstrate that MNNGE can identify key nodes more accurately than other methods, without requiring parameter settings, and is suitable for large-scale complex networks.

摘要

在复杂网络分析领域,准确识别关键节点对于理解和控制信息传播至关重要。尽管已经提出了几种局部中心性方法,但如果没有充分考虑节点与其邻居之间的相互作用,它们的准确性可能会受到影响。为了解决这个问题,本文提出了一种基于多层邻居节点引力和信息熵(MNNGE)的关键节点识别方法。该方法的工作原理如下:首先,根据节点的权重计算节点的相对引力。其次,通过考虑相邻节点的属性来计算节点的直接引力,从而捕捉局部三角结构内的相互作用。最后,利用信息熵对多层邻居节点的相对引力和直接引力进行聚合,得到节点的中心性。为了验证MNNGE方法的有效性,我们在各种真实网络数据集上进行了实验,使用了易感-感染-恢复(SIR)模型、肯德尔τ相关系数、杰卡德相似系数、单调性和互补累积分布函数等评估指标。我们的结果表明,MNNGE能够比其他方法更准确地识别关键节点,无需参数设置,适用于大规模复杂网络。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6429/11727151/50b11e6a19db/entropy-26-01041-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验