Suppr超能文献

用于因果发现和重新编程系统的算法信息演算

An Algorithmic Information Calculus for Causal Discovery and Reprogramming Systems.

作者信息

Zenil Hector, Kiani Narsis A, Marabita Francesco, Deng Yue, Elias Szabolcs, Schmidt Angelika, Ball Gordon, Tegnér Jesper

机构信息

Algorithmic Dynamics Lab, Center for Molecular Medicine, Karolinska Institutet, Stockholm 171 76, Sweden; Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Solna, Stockholm 171 76, Sweden; Oxford Immune Algorithmics, Reading RG1 3EU, UK; Science for Life Laboratory, Solna 171 65, Sweden; Algorithmic Nature Group, LABORES for the Natural and Digital Sciences, Paris 75006, France.

Algorithmic Dynamics Lab, Center for Molecular Medicine, Karolinska Institutet, Stockholm 171 76, Sweden; Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Solna, Stockholm 171 76, Sweden; Science for Life Laboratory, Solna 171 65, Sweden; Algorithmic Nature Group, LABORES for the Natural and Digital Sciences, Paris 75006, France.

出版信息

iScience. 2019 Sep 27;19:1160-1172. doi: 10.1016/j.isci.2019.07.043. Epub 2019 Aug 8.

Abstract

We introduce and develop a method that demonstrates that the algorithmic information content of a system can be used as a steering handle in the dynamical phase space, thus affording an avenue for controlling and reprogramming systems. The method consists of applying a series of controlled interventions to a networked system while estimating how the algorithmic information content is affected. We demonstrate the method by reconstructing the phase space and their generative rules of some discrete dynamical systems (cellular automata) serving as controlled case studies. Next, the model-based interventional or causal calculus is evaluated and validated using (1) a huge large set of small graphs, (2) a number of larger networks with different topologies, and finally (3) biological networks derived from a widely studied and validated genetic network (E. coli) as well as on a significant number of differentiating (Th17) and differentiated human cells from a curated biological network data.

摘要

我们介绍并开发了一种方法,该方法表明系统的算法信息内容可在动态相空间中用作控制柄,从而为控制系统和重新编程系统提供了一条途径。该方法包括对网络系统应用一系列受控干预措施,同时估计算法信息内容是如何受到影响的。我们通过重建一些作为受控案例研究的离散动力系统(细胞自动机)的相空间及其生成规则来演示该方法。接下来,使用(1)大量的小图、(2)一些具有不同拓扑结构的较大网络,最后(3)从经过广泛研究和验证的遗传网络(大肠杆菌)衍生而来的生物网络,以及从精心策划的生物网络数据中获取的大量分化(Th17)和分化的人类细胞,对基于模型的干预或因果演算进行评估和验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d6e/6831824/3a53657d3ccd/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验