Heinz Stefan
Department of Mathematics and Statistics, University of Wyoming, 1000 E. University Avenue, Laramie, WY 82071, USA.
Entropy (Basel). 2024 Nov 30;26(12):1044. doi: 10.3390/e26121044.
Usually applied simulation methods for turbulent flows as large eddy simulation (LES), wall-modeled LES (WMLES), and detached eddy simulation (DES) face significant challenges: they are characterized by improper resolution variations and essential practical simulation problems given by huge computational cost, imbalanced resolution transitions, and resolution mismatch. Alternative simulation methods are described here. By using an extremal entropy analysis, it is shown how minimal error simulation methods can be designed. It is shown that these methods can overcome the typical shortcomings of usually applied simulation methods. A crucial ingredient of this analysis is the identification of a mathematically implied general hybridization mechanism, which is missing in existing methods. Applications to several complex high Reynolds number flow simulations reveal essential performance, functionality, and computational cost advantages of minimal error simulation methods.
通常应用于湍流的模拟方法,如大涡模拟(LES)、壁模型大涡模拟(WMLES)和分离涡模拟(DES)面临着重大挑战:它们的特点是分辨率变化不当,以及由于巨大的计算成本、不平衡的分辨率过渡和分辨率不匹配而产生的基本实际模拟问题。这里描述了替代模拟方法。通过使用极值熵分析,展示了如何设计最小误差模拟方法。结果表明,这些方法可以克服通常应用的模拟方法的典型缺点。该分析的一个关键要素是识别一种数学上隐含的通用混合机制,而现有方法中缺少这种机制。对几个复杂的高雷诺数流动模拟的应用揭示了最小误差模拟方法在性能、功能和计算成本方面的基本优势。