Verkuilen Jay, Johnson Peter J
Ph.D. Program in Educational Psychology, CUNY Graduate Center, New York, NY 10016, USA.
Entropy (Basel). 2024 Dec 14;26(12):1096. doi: 10.3390/e26121096.
Heywood cases and other improper solutions occur frequently in latent variable models, e.g., factor analysis, item response theory, latent class analysis, multilevel models, or structural equation models, all of which are models with response variables taken from an exponential family. They have important consequences for scoring with the latent variable model and are indicative of issues in a model, such as poor identification or model misspecification. In the context of the 2PL and 3PL models in IRT, they are more frequently known as Guttman items and are identified by having a discrimination parameter that is deemed excessively large. Other IRT models, such as the newer asymmetric item response theory (AsymIRT) or polytomous IRT models often have parameters that are not easy to interpret directly, so scanning parameter estimates are not necessarily indicative of the presence of problematic values. The graphical examination of the IRF can be useful but is necessarily subjective and highly dependent on choices of graphical defaults. We propose using the derivatives of the IRF, item Fisher information functions, and our proposed Item Fraction of Total Information (IFTI) decomposition metric to bypass the parameters, allowing for the more concrete and consistent identification of Heywood cases. We illustrate the approach by using empirical examples by using AsymIRT and nominal response models.
海伍德情况及其他不合适的解在潜变量模型中经常出现,例如在因子分析、项目反应理论、潜在类别分析、多层模型或结构方程模型中,所有这些都是响应变量取自指数族的模型。它们对潜变量模型评分有重要影响,并且表明模型存在问题,如识别性差或模型设定错误。在IRT的2PL和3PL模型背景下,它们更常被称为古特曼项目,其特征是具有被认为过大的区分参数。其他IRT模型,如较新的非对称项目反应理论(AsymIRT)或多分类IRT模型,其参数往往不易直接解释,因此扫描参数估计值不一定表明存在问题值。对项目反应函数(IRF)进行图形检查可能有用,但必然具有主观性,且高度依赖于图形默认设置的选择。我们建议使用IRF的导数、项目费希尔信息函数以及我们提出的总信息项目分数(IFTI)分解度量来绕过参数,从而更具体、一致地识别海伍德情况。我们通过使用AsymIRT和名义反应模型的实证例子来说明该方法。