Suppr超能文献

一种用于推断固体电磁学中分形阶复杂性的熵动力学方法。

An Entropy Dynamics Approach to Inferring Fractal-Order Complexity in the Electromagnetics of Solids.

作者信息

Pahari Basanta R, Oates William

机构信息

Hawai'i CC Department of Mathematics, University of Hawai'i, Hilo, HI 96720, USA.

Department of Mechanical Engineering, Florida Center for Advanced Aero Propulsion, Florida A&M University and Florida State University, Tallahassee, FL 32310, USA.

出版信息

Entropy (Basel). 2024 Dec 17;26(12):1103. doi: 10.3390/e26121103.

Abstract

A fractal-order entropy dynamics model is developed to create a modified form of Maxwell's time-dependent electromagnetic equations. The approach uses an information-theoretic method by combining Shannon's entropy with fractional moment constraints in time and space. Optimization of the cost function leads to a time-dependent Bayesian posterior density that is used to homogenize the electromagnetic fields. Self-consistency between maximizing entropy, inference of Bayesian posterior densities, and a fractal-order version of Maxwell's equations are developed. We first give a set of relationships for fractal derivative definitions and their relationship to divergence, curl, and Laplacian operators. The fractal-order entropy dynamic framework is then introduced to infer the Bayesian posterior and its application to modeling homogenized electromagnetic fields in solids. The results provide a methodology to help understand complexity from limited electromagnetic data using maximum entropy by formulating a fractal form of Maxwell's electromagnetic equations.

摘要

开发了一种分形阶熵动力学模型,以创建麦克斯韦时间相关电磁方程的修正形式。该方法采用信息论方法,将香农熵与时间和空间中的分数阶矩约束相结合。成本函数的优化导致了一个时间相关的贝叶斯后验密度,用于使电磁场均匀化。发展了最大熵、贝叶斯后验密度的推断和麦克斯韦方程的分形阶版本之间的自洽性。我们首先给出了一组分形导数定义的关系及其与散度、旋度和拉普拉斯算子的关系。然后引入分形阶熵动态框架来推断贝叶斯后验及其在固体中均匀化电磁场建模中的应用。结果提供了一种方法,通过构建麦克斯韦电磁方程的分形形式,利用最大熵从有限的电磁数据中帮助理解复杂性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c387/11675651/a06db46596af/entropy-26-01103-g001.jpg

相似文献

2
Dynamic Multiscale Quantum Mechanics/Electromagnetics Simulation Method.
J Chem Theory Comput. 2012 Apr 10;8(4):1190-9. doi: 10.1021/ct200859h. Epub 2012 Mar 14.
3
Solving Maxwell's Equations Using Polarimetry Alone.
Nano Lett. 2024 Jul 17;24(28):8658-8663. doi: 10.1021/acs.nanolett.4c01976. Epub 2024 Jul 1.
4
Reformulation of Maxwell's equations to incorporate near-solute solvent structure.
J Phys Chem B. 2008 Sep 4;112(35):10791-4. doi: 10.1021/jp805705m. Epub 2008 Aug 12.
5
Electromagnetic-field propagation based on Maxwell's propagation operator.
Opt Lett. 1996 Nov 1;21(21):1727-8. doi: 10.1364/ol.21.001727.
6
First-principles modeling of electromagnetic scattering by discrete and discretely heterogeneous random media.
Phys Rep. 2016 May 16;632:1-75. doi: 10.1016/j.physrep.2016.04.002. Epub 2016 Apr 12.
7
Time-dependent entropy evolution in microscopic and macroscopic electromagnetic relaxation.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Dec;72(6 Pt 2):066613. doi: 10.1103/PhysRevE.72.066613. Epub 2005 Dec 22.
8
Computational electromagnetics: the physics of smooth versus oscillatory fields.
Philos Trans A Math Phys Eng Sci. 2004 Mar 15;362(1816):579-602. doi: 10.1098/rsta.2003.1336.
9
Supertoroidal light pulses as electromagnetic skyrmions propagating in free space.
Nat Commun. 2021 Oct 8;12(1):5891. doi: 10.1038/s41467-021-26037-w.
10
On distance-based topological indices and co-indices of fractal-type molecular graphs and their respective graph entropies.
PLoS One. 2023 Nov 9;18(11):e0290047. doi: 10.1371/journal.pone.0290047. eCollection 2023.

本文引用的文献

1
Entropy, Information, and the Updating of Probabilities.
Entropy (Basel). 2021 Jul 14;23(7):895. doi: 10.3390/e23070895.
2
Uncertainty quantification in classical molecular dynamics.
Philos Trans A Math Phys Eng Sci. 2021 May 17;379(2197):20200082. doi: 10.1098/rsta.2020.0082. Epub 2021 Mar 29.
3
Why the Mittag-Leffler Function Can Be Considered the Queen Function of the Fractional Calculus?
Entropy (Basel). 2020 Nov 30;22(12):1359. doi: 10.3390/e22121359.
4
Recent advances in physical reservoir computing: A review.
Neural Netw. 2019 Jul;115:100-123. doi: 10.1016/j.neunet.2019.03.005. Epub 2019 Mar 20.
5
Information processing via physical soft body.
Sci Rep. 2015 May 27;5:10487. doi: 10.1038/srep10487.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验