Pahari Basanta R, Oates William
Hawai'i CC Department of Mathematics, University of Hawai'i, Hilo, HI 96720, USA.
Department of Mechanical Engineering, Florida Center for Advanced Aero Propulsion, Florida A&M University and Florida State University, Tallahassee, FL 32310, USA.
Entropy (Basel). 2024 Dec 17;26(12):1103. doi: 10.3390/e26121103.
A fractal-order entropy dynamics model is developed to create a modified form of Maxwell's time-dependent electromagnetic equations. The approach uses an information-theoretic method by combining Shannon's entropy with fractional moment constraints in time and space. Optimization of the cost function leads to a time-dependent Bayesian posterior density that is used to homogenize the electromagnetic fields. Self-consistency between maximizing entropy, inference of Bayesian posterior densities, and a fractal-order version of Maxwell's equations are developed. We first give a set of relationships for fractal derivative definitions and their relationship to divergence, curl, and Laplacian operators. The fractal-order entropy dynamic framework is then introduced to infer the Bayesian posterior and its application to modeling homogenized electromagnetic fields in solids. The results provide a methodology to help understand complexity from limited electromagnetic data using maximum entropy by formulating a fractal form of Maxwell's electromagnetic equations.
开发了一种分形阶熵动力学模型,以创建麦克斯韦时间相关电磁方程的修正形式。该方法采用信息论方法,将香农熵与时间和空间中的分数阶矩约束相结合。成本函数的优化导致了一个时间相关的贝叶斯后验密度,用于使电磁场均匀化。发展了最大熵、贝叶斯后验密度的推断和麦克斯韦方程的分形阶版本之间的自洽性。我们首先给出了一组分形导数定义的关系及其与散度、旋度和拉普拉斯算子的关系。然后引入分形阶熵动态框架来推断贝叶斯后验及其在固体中均匀化电磁场建模中的应用。结果提供了一种方法,通过构建麦克斯韦电磁方程的分形形式,利用最大熵从有限的电磁数据中帮助理解复杂性。