Suppr超能文献

通过分类器驱动的内容审核对语言模型进行上下文微调以生成文本。

Contextual Fine-Tuning of Language Models with Classifier-Driven Content Moderation for Text Generation.

作者信息

Punnaivanam Matan, Velvizhy Palani

机构信息

Department of Computer Science and Engineering, College of Engineering Guindy, Anna University, Chennai 600025, India.

出版信息

Entropy (Basel). 2024 Dec 20;26(12):1114. doi: 10.3390/e26121114.

Abstract

In today's digital age, ensuring the appropriateness of content for children is crucial for their cognitive and emotional development. The rise of automated text generation technologies, such as Large Language Models like LLaMA, Mistral, and Zephyr, has created a pressing need for effective tools to filter and classify suitable content. However, the existing methods often fail to effectively address the intricate details and unique characteristics of children's literature. This study aims to bridge this gap by developing a robust framework that utilizes fine-tuned language models, classification techniques, and contextual story generation to generate and classify children's stories based on their suitability. Employing a combination of fine-tuning techniques on models such as LLaMA, Mistral, and Zephyr, alongside a BERT-based classifier, we evaluated the generated stories against established metrics like ROUGE, METEOR, and BERT Scores. The fine-tuned Mistral-7B model achieved a ROUGE-1 score of 0.4785, significantly higher than the base model's 0.3185, while Zephyr-7B-Beta achieved a METEOR score of 0.4154 compared to its base counterpart's score of 0.3602. The results indicated that the fine-tuned models outperformed base models, generating content more aligned with human standards. Moreover, the BERT Classifier exhibited high precision (0.95) and recall (0.97) for identifying unsuitable content, further enhancing the reliability of content classification. These findings highlight the potential of advanced language models in generating age-appropriate stories and enhancing content moderation strategies. This research has broader implications for educational technology, content curation, and parental control systems, offering a scalable approach to ensuring children's exposure to safe and enriching narratives.

摘要

在当今数字时代,确保儿童内容的适宜性对其认知和情感发展至关重要。诸如LLaMA、Mistral和Zephyr等大型语言模型之类的自动文本生成技术的兴起,使得迫切需要有效的工具来筛选和分类合适的内容。然而,现有方法往往无法有效应对儿童文学的复杂细节和独特特征。本研究旨在通过开发一个强大的框架来弥合这一差距,该框架利用微调语言模型、分类技术和上下文故事生成,根据适宜性生成和分类儿童故事。我们对LLaMA、Mistral和Zephyr等模型采用微调技术,并结合基于BERT的分类器,根据ROUGE、METEOR和BERT分数等既定指标对生成的故事进行评估。微调后的Mistral-7B模型的ROUGE-1分数为0.4785,显著高于基础模型的0.3185,而Zephyr-7B-Beta的METEOR分数为0.4154,相比其基础模型的0.3602有所提高。结果表明,微调后的模型优于基础模型,生成的内容更符合人类标准。此外,BERT分类器在识别不合适内容方面表现出高精度(0.95)和高召回率(0.97),进一步提高了内容分类的可靠性。这些发现凸显了先进语言模型在生成适合年龄的故事和加强内容审核策略方面的潜力。这项研究对教育技术、内容策划和家长控制系统具有更广泛的意义,提供了一种可扩展的方法来确保儿童接触到安全且丰富的叙事内容。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b768/11675295/dc0c9f1eada7/entropy-26-01114-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验