Asaf Sajjad, Jan Rahmatullah, Asif Saleem, Bilal Saqib, Kim Kyung-Min, Lee In-Jung, Al-Harrasi Ahmed
Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman.
Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea.
Genes (Basel). 2024 Dec 8;15(12):1577. doi: 10.3390/genes15121577.
The shift to a parasitic lifestyle in plants often leaves distinct marks on their plastid genomes, given the central role plastids play in photosynthesis. Studying these unique adaptations in parasitic plants is essential for understanding the mechanisms and evolutionary patterns driving plastome reduction in angiosperms. By exploring these changes, we can gain deeper insights into how parasitism reshapes the genomic architecture of plants. This study analyzed and compared the plastomes of 113 parasitic plants from different families. The Orobanchaceae family (hemiparasitic plants) displayed the largest plastome size, while Apodanthaceae exhibited the shortest. Additionally, Orobanchaceae showcased little to no gene loss in their plastomes. However, holoparasitic species typically had reduced plastome sizes. Convolvulaceae exhibited significantly reduced plastome sizes due to high gene loss, and Apodanthaceae retained only a few genes. Gene divergence among different families was also investigated, and and in Orobanchaceae; D and in Convolvulaceae; F and A n Loranthaceae; and in Santalaceae showed greater divergence. Additionally, Orobanchaceae had the highest numbers of all repeat types, whereas Loranthaceae and Convolvulaceae exhibited the lowest repeat numbers. Similarly, more simple sequence repeats were reported in Loranthaceae and Santalaceae. Our phylogenetic analysis also uncovered a distinct clade comprising Loranthaceae, with a single Schoepfiaceae species clustering nearby. Contrary to expectations, parasitic and hemiparasitic plants formed mixed groupings instead of segregating into separate clades. These findings offer insights into parasitic plants' evolutionary relationships, revealing shared and divergent genomic features across diverse lineages.
鉴于质体在光合作用中发挥的核心作用,植物向寄生生活方式的转变往往会在其质体基因组上留下明显的印记。研究寄生植物中的这些独特适应性对于理解被子植物质体基因组减少的机制和进化模式至关重要。通过探索这些变化,我们可以更深入地了解寄生如何重塑植物的基因组结构。本研究分析并比较了来自不同科的113种寄生植物的质体基因组。列当科(半寄生植物)的质体基因组大小最大,而无叶寄生科的质体基因组最短。此外,列当科的质体基因组几乎没有基因丢失。然而,全寄生物种的质体基因组大小通常会减小。旋花科由于基因大量丢失,质体基因组大小显著减小,而无叶寄生科仅保留了少数基因。还研究了不同科之间的基因差异,列当科中的[具体基因差异情况未明确给出];旋花科中的D和[具体基因差异情况未明确给出];桑寄生科中的F和A n[具体基因差异情况未明确给出];檀香科中的[具体基因差异情况未明确给出]显示出更大的差异。此外,列当科的所有重复类型数量最多,而桑寄生科和旋花科的重复数量最低。同样,桑寄生科和檀香科中报道的简单序列重复更多。我们的系统发育分析还发现了一个由桑寄生科组成的独特分支,附近聚集着一个铁青树科物种。与预期相反,寄生植物和半寄生植物形成了混合分组,而不是分成单独的分支。这些发现为寄生植物的进化关系提供了见解,揭示了不同谱系中共同和不同的基因组特征。