Suppr超能文献

从机器学习角度看风味轮的发展。

Flavor Wheel Development from a Machine Learning Perspective.

作者信息

Rodríguez-Mendoza Anggie V, Arbeláez-Parra Santiago, Amaya-Gómez Rafael, Ratkovich Nicolas

机构信息

Department of Chemical & Food Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá D.C. 111711, Colombia.

Department of Industrial Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá D.C. 111711, Colombia.

出版信息

Foods. 2024 Dec 20;13(24):4142. doi: 10.3390/foods13244142.

Abstract

The intricate relationships between chemical compounds and sensory descriptors in distilled spirits have long intrigued distillers, sensory experts, and consumers alike. The importance and complexity of this relation affect the production, quality, and appreciation of spirits, and the success of a product. Because of that, profoundly investigating the different flavor and aroma combinations that the chemical compounds can give to a desired beverage takes an essential place in the industry. This study aims to study these relationships by employing machine learning techniques to analyze a comprehensive dataset with 3051 chemical compounds and their associated aroma descriptors for seven distilled spirit categories: Baijiu, cachaça, gin, mezcal, rum, tequila, and whisk(e)y. The study uses principal component analysis (PCA) to reduce the dimensionality of the dataset and a clustering machine learning model to identify distinct clusters of aroma descriptors associated with each beverage category. Based on these results, an aroma wheel that encapsulates the diverse olfactory landscapes of various distilled spirits was developed. This flavor wheel is a valuable tool for distillers, sensory experts, and consumers, providing a comprehensive reference for understanding and appreciating the complexities of distilled spirits.

摘要

蒸馏酒中化合物与感官描述符之间的复杂关系长期以来一直吸引着酿酒师、感官专家和消费者。这种关系的重要性和复杂性影响着烈酒的生产、质量、鉴赏以及产品的成功。正因如此,深入研究化合物能赋予目标饮品的不同风味和香气组合在该行业中占据着至关重要的地位。本研究旨在通过运用机器学习技术来分析一个包含3051种化合物及其相关香气描述符的综合数据集,该数据集涵盖了七种蒸馏酒类别:白酒、巴西甘蔗酒、杜松子酒、龙舌兰、朗姆酒、龙舌兰酒和威士忌。该研究使用主成分分析(PCA)来降低数据集的维度,并使用聚类机器学习模型来识别与每个饮品类别相关的不同香气描述符集群。基于这些结果,开发了一个囊括各种蒸馏酒多样嗅觉特征的香气轮。这个风味轮对于酿酒师、感官专家和消费者来说是一个有价值的工具,为理解和鉴赏蒸馏酒的复杂性提供了全面的参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e8d/11675698/2048a1d1a741/foods-13-04142-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验