Suppr超能文献

VDMNet:一种用于视网膜血管分割的具有血管动态卷积和多尺度融合的深度学习框架。

VDMNet: A Deep Learning Framework with Vessel Dynamic Convolution and Multi-Scale Fusion for Retinal Vessel Segmentation.

作者信息

Xu Guiwen, Hu Tao, Zhang Qinghua

机构信息

Department of Neurosurgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China.

School of Information Science and Technology, Fudan University, Shanghai 200433, China.

出版信息

Bioengineering (Basel). 2024 Nov 25;11(12):1190. doi: 10.3390/bioengineering11121190.

Abstract

Retinal vessel segmentation is crucial for diagnosing and monitoring ophthalmic and systemic diseases. Optical Coherence Tomography Angiography (OCTA) enables detailed imaging of the retinal microvasculature, but existing methods for OCTA segmentation face significant limitations, such as susceptibility to noise, difficulty in handling class imbalance, and challenges in accurately segmenting complex vascular morphologies. In this study, we propose VDMNet, a novel segmentation network designed to overcome these challenges by integrating several advanced components. Firstly, we introduce the Fast Multi-Head Self-Attention (FastMHSA) module to effectively capture both global and local features, enhancing the network's robustness against complex backgrounds and pathological interference. Secondly, the Vessel Dynamic Convolution (VDConv) module is designed to dynamically adapt to curved and crossing vessels, thereby improving the segmentation of complex morphologies. Furthermore, we employ the Multi-Scale Fusion (MSF) mechanism to aggregate features across multiple scales, enhancing the detection of fine vessels while maintaining vascular continuity. Finally, we propose Weighted Asymmetric Focal Tversky Loss (WAFT Loss) to address class imbalance issues, focusing on the accurate segmentation of small and difficult-to-detect vessels. The proposed framework was evaluated on the publicly available ROSE-1 and OCTA-3M datasets. Experimental results demonstrated that our model effectively preserved the edge information of tiny vessels and achieved state-of-the-art performance in retinal vessel segmentation across several evaluation metrics. These improvements highlight VDMNet's superior ability to capture both fine vascular details and overall vessel connectivity, making it a robust solution for retinal vessel segmentation.

摘要

视网膜血管分割对于眼科和全身性疾病的诊断和监测至关重要。光学相干断层扫描血管造影(OCTA)能够对视网膜微血管系统进行详细成像,但现有的OCTA分割方法面临重大局限性,如易受噪声影响、难以处理类别不平衡问题以及在准确分割复杂血管形态方面存在挑战。在本研究中,我们提出了VDMNet,这是一种新颖的分割网络,旨在通过集成几个先进组件来克服这些挑战。首先,我们引入了快速多头自注意力(FastMHSA)模块,以有效捕捉全局和局部特征,增强网络对复杂背景和病理干扰的鲁棒性。其次,血管动态卷积(VDConv)模块旨在动态适应弯曲和交叉的血管,从而改善复杂形态的分割。此外,我们采用多尺度融合(MSF)机制来聚合多尺度特征,在保持血管连续性的同时增强对细小血管的检测。最后,我们提出加权非对称焦点Tversky损失(WAFT Loss)来解决类别不平衡问题,专注于对小的和难以检测的血管进行准确分割。所提出的框架在公开可用的ROSE - 1和OCTA - 3M数据集上进行了评估。实验结果表明,我们的模型有效地保留了微小血管的边缘信息,并在多个评估指标上在视网膜血管分割中取得了领先的性能。这些改进突出了VDMNet在捕捉精细血管细节和整体血管连通性方面的卓越能力,使其成为视网膜血管分割的强大解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7db9/11727645/f04c756921c3/bioengineering-11-01190-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验