Jiang Lu, Xu Di, Xu Qifan, Chatziioannou Arion, Iwamoto Keisuke S, Hui Susanta, Sheng Ke
Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94115, USA.
Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA.
Bioengineering (Basel). 2024 Dec 11;11(12):1255. doi: 10.3390/bioengineering11121255.
Image-guided mouse irradiation is essential to understand interventions involving radiation prior to human studies. Our objective is to employ Swin UNEt TRansformers (Swin UNETR) to segment native micro-CT and contrast-enhanced micro-CT scans and benchmark the results against 3D no-new-Net (nnU-Net). Swin UNETR reformulates mouse organ segmentation as a sequence-to-sequence prediction task using a hierarchical Swin Transformer encoder to extract features at five resolution levels, and it connects to a Fully Convolutional Neural Network (FCNN)-based decoder via skip connections. The models were trained and evaluated on open datasets, with data separation based on individual mice. Further evaluation on an external mouse dataset acquired on a different micro-CT with lower kVp and higher imaging noise was also employed to assess model robustness and generalizability. The results indicate that Swin UNETR consistently outperforms nnU-Net and AIMOS in terms of the average dice similarity coefficient (DSC) and the Hausdorff distance (HD95p), except in two mice for intestine contouring. This superior performance is especially evident in the external dataset, confirming the model's robustness to variations in imaging conditions, including noise and quality, and thereby positioning Swin UNETR as a highly generalizable and efficient tool for automated contouring in pre-clinical workflows.
在人体研究之前,图像引导的小鼠辐照对于理解涉及辐射的干预措施至关重要。我们的目标是使用Swin UNEt变压器(Swin UNETR)对天然微型计算机断层扫描(micro-CT)和对比增强微型计算机断层扫描进行分割,并将结果与3D无新网络(nnU-Net)进行基准测试。Swin UNETR将小鼠器官分割重新表述为一个序列到序列的预测任务,使用分层Swin变压器编码器在五个分辨率级别提取特征,并通过跳跃连接连接到基于全卷积神经网络(FCNN)的解码器。这些模型在开放数据集上进行训练和评估,数据根据个体小鼠进行分离。还对在具有较低千伏峰值(kVp)和较高成像噪声的不同微型计算机断层扫描上获取的外部小鼠数据集进行了进一步评估,以评估模型的鲁棒性和通用性。结果表明,除了在两只小鼠的肠道轮廓分割中,Swin UNETR在平均骰子相似系数(DSC)和豪斯多夫距离(HD95p)方面始终优于nnU-Net和AIMOS。这种优越的性能在外部数据集中尤为明显,证实了该模型对包括噪声和质量在内的成像条件变化的鲁棒性,从而将Swin UNETR定位为临床前工作流程中自动轮廓分割的高度通用且高效的工具。