Ribas-Sabartés Júlia, Sánchez-Molins Meritxell, d'Oliveira Nuno Gustavo
Departamento de Odontoestomatología, Facultad de Medicina y Ciencias de la Salud, Universidad de Barcelona, Campus Bellvitge, 08097 L'Hospitalet de Llobregat, Barcelona, Spain.
Bioengineering (Basel). 2024 Dec 18;11(12):1286. doi: 10.3390/bioengineering11121286.
The use of artificial intelligence in orthodontics is emerging as a tool for localizing cephalometric points in two-dimensional X-rays. AI systems are being evaluated for their accuracy and efficiency compared to conventional methods performed by professionals. The main objective of this study is to identify the artificial intelligence algorithms that yield the best results for cephalometric landmark localization, along with their learning system. A literature search was conducted across PubMed-MEDLINE, Cochrane, Scopus, IEEE Xplore, and Web of Science. Observational and experimental studies from 2013 to 2023 assessing the detection of at least 13 cephalometric landmarks in two-dimensional radiographs were included. Studies requiring advanced computer engineering knowledge or involving patients with anomalies, syndromes, or orthodontic appliances, were excluded. Risk of bias was assessed using Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) and Newcastle-Ottawa Scale (NOS) tools. Of 385 references, 13 studies met the inclusion criteria (1 diagnostic accuracy study and 12 retrospective cohorts). Six were high-risk, and seven were low-risk. Convolutional neural networks (CNN)-based AI algorithms showed point localization accuracy ranging from 64.3 to 97.3%, with a mean error of 1.04 mm ± 0.89 to 3.40 mm ± 1.57, within the clinical range of 2 mm. YOLOv3 demonstrated improvements over its earlier version. CNN have proven to be the most effective AI system for detecting cephalometric points in radiographic images. Although CNN-based algorithms generate results very quickly and reproducibly, they still do not achieve the accuracy of orthodontists.
人工智能在正畸学中的应用正逐渐成为一种在二维X射线上定位头影测量点的工具。与专业人员采用的传统方法相比,人工智能系统的准确性和效率正在得到评估。本研究的主要目的是确定对头影测量标志点定位效果最佳的人工智能算法及其学习系统。我们在PubMed-MEDLINE、Cochrane、Scopus、IEEE Xplore和Web of Science上进行了文献检索。纳入了2013年至2023年期间评估在二维放射照片中至少检测13个头影测量标志点的观察性和实验性研究。排除了需要先进计算机工程知识的研究或涉及有异常、综合征或正畸矫治器患者的研究。使用诊断准确性研究质量评估(QUADAS-2)和纽卡斯尔-渥太华量表(NOS)工具评估偏倚风险。在385篇参考文献中,有13项研究符合纳入标准(1项诊断准确性研究和12项回顾性队列研究)。6项为高风险,7项为低风险。基于卷积神经网络(CNN)的人工智能算法显示点定位准确率在64.3%至97.3%之间,平均误差为1.04 mm±0.89至3.40 mm±1.57,在2 mm的临床范围内。YOLOv3相较于其早期版本有改进。事实证明,CNN是检测放射图像中头影测量点最有效的人工智能系统。尽管基于CNN的算法能非常快速且可重复地生成结果,但它们仍未达到正畸医生的准确性。