Grande-Barreto Jonas, Lopez-Armas Gabriela C, Sanchez-Tiro Jose Antonio, Peregrina-Barreto Hayde
Tecnologías de la Información, Universidad Politécnica de Puebla, Cuanalá, Puebla 72640, Mexico.
Centro de Enseñanza Técnica Industrial, C. Nueva Escocia 1885, Guadalajara 44638, Mexico.
Life (Basel). 2024 Dec 9;14(12):1634. doi: 10.3390/life14121634.
Identifying breast masses is relevant in early cancer detection. Automatic identification using computational methods helps assist medical experts with this task. Although high values have been reported in breast mass classification from digital mammograms, most results have focused on a general benign/malignant classification. According to the BI-RADS standard, masses are associated with cancer risk by grade depending on their specific shape, margin, and density characteristics. This work presents a methodology of testing several descriptors on the INbreast dataset, finding those better related to clinical assessment. The analysis provides a description based on BI-RADS for mass classification by combining neural networks and image processing. The results show that masses associated with grades BI-RADS-2 to BI-RADS-5 can be identified, reaching a general accuracy and sensitivity of 0.88±0.07. While this initial study is limited to a single dataset, it demonstrates the possibility of generating a description for automatic classification that is directly linked to the information analyzed by medical experts in clinical practice.
识别乳腺肿块对于早期癌症检测至关重要。使用计算方法进行自动识别有助于协助医学专家完成这项任务。尽管在从数字化乳腺钼靶片中进行乳腺肿块分类方面已有较高的数值报道,但大多数结果都集中在一般的良性/恶性分类上。根据BI-RADS标准,肿块根据其特定的形状、边缘和密度特征按等级与癌症风险相关联。这项工作提出了一种在INbreast数据集上测试多个描述符的方法,找出那些与临床评估相关性更强的描述符。该分析通过结合神经网络和图像处理,提供了基于BI-RADS的肿块分类描述。结果表明,可以识别出与BI-RADS-2至BI-RADS-5级相关的肿块,总体准确率和灵敏度达到0.88±0.07。虽然这项初步研究仅限于单个数据集,但它证明了生成与医学专家在临床实践中分析的信息直接相关的自动分类描述的可能性。