Suppr超能文献

一种基于机器学习的甲状腺结节意义不明确的非典型性患者术前评估和恶性肿瘤预测模型。

A Machine Learning-Based Model for Preoperative Assessment and Malignancy Prediction in Patients with Atypia of Undetermined Significance Thyroid Nodules.

作者信息

Moon Gilseong, Park Jae Hyun, Lee Taesic, Yoon Jong Ho

机构信息

Division of Thyroid-Endocrine Surgery, Department of Surgery, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea.

Division of Data Mining and Computational Biology, Institute of Global Health Care and Development, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea.

出版信息

J Clin Med. 2024 Dec 19;13(24):7769. doi: 10.3390/jcm13247769.

Abstract

The aim of this study was to investigate the preoperative clinical and hematologic variables, including the neutrophil-to-lymphocyte ratio (NLR), that can be used to predict malignancy in patients with atypia of undetermined significance (AUS) thyroid nodules; we further aimed to develop a machine learning-based prediction model. We enrolled 280 patients who underwent surgery for AUS nodules at the Wonju Severance Christian Hospital between 2018 and 2022. A logistic regression-based model was trained and tested using cross-validation, with the performance evaluated using metrics such as the area under the receiver operating characteristic curve (AUROC). Among the 280 patients, 116 (41.4%) were confirmed to have thyroid malignancies. Independent predictors of malignancy included age, tumor size, and the Korean Thyroid Imaging Reporting and Data System (K-TIRADS) classification, particularly in patients under 55 years of age. The addition of NLR to these predictors significantly improved the malignancy prediction accuracy in this subgroup. Incorporating NLR into preoperative assessments provides a cost-effective, accessible tool for refining surgical decision making in younger patients with AUS nodules.

摘要

本研究的目的是调查术前临床和血液学变量,包括中性粒细胞与淋巴细胞比值(NLR),这些变量可用于预测意义未明的非典型性(AUS)甲状腺结节患者的恶性肿瘤;我们还旨在开发一种基于机器学习的预测模型。我们纳入了2018年至2022年期间在原州Severance基督教医院接受AUS结节手术的280例患者。使用交叉验证对基于逻辑回归的模型进行训练和测试,并使用受试者操作特征曲线下面积(AUROC)等指标评估性能。在这280例患者中,116例(41.4%)被确诊为甲状腺恶性肿瘤。恶性肿瘤的独立预测因素包括年龄、肿瘤大小和韩国甲状腺影像报告和数据系统(K-TIRADS)分类,尤其是在55岁以下的患者中。在这些预测因素中加入NLR可显著提高该亚组患者恶性肿瘤预测的准确性。将NLR纳入术前评估为年轻的AUS结节患者优化手术决策提供了一种经济有效、易于获得的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22bd/11727776/150dfbb2968c/jcm-13-07769-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验