Rhind Shawn G, Shiu Maria Y, Vartanian Oshin, Tenn Catherine, Nakashima Ann, Jetly Rakesh, Yang Zhihui, Wang Kevin K
Defence Research and Development Canada, Toronto Research Centre, Toronto, ON M3K 2C9, Canada.
Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2W6, Canada.
Int J Mol Sci. 2024 Dec 21;25(24):13683. doi: 10.3390/ijms252413683.
Military breachers are routinely exposed to repetitive low-level blast overpressure, placing them at elevated risk for long-term neurological sequelae. Mounting evidence suggests that circulating brain-reactive autoantibodies, generated following CNS injury, may serve as both biomarkers of cumulative damage and drivers of secondary neuroinflammation. In this study, we compared circulating autoantibody profiles in military breachers ( = 18) with extensive blast exposure against unexposed military controls ( = 19). Using high-sensitivity immunoassays, we quantified IgG and IgM autoantibodies targeting glial fibrillary acidic protein (GFAP), myelin basic protein (MBP), and pituitary (PIT) antigens. Breachers exhibited significantly elevated levels of anti-GFAP IgG ( < 0.001) and anti-PIT IgG ( < 0.001) compared to controls, while anti-MBP autoantibody levels remained unchanged. No significant differences were observed for any IgM autoantibody measurements. These patterns suggest that repetitive blast exposure induces a chronic, adaptive immune response rather than a short-lived acute phase. The elevated IgG autoantibodies highlight the vulnerability of astrocytes, myelin, and the hypothalamic-pituitary axis to ongoing immune-mediated injury following repeated blast insults, likely reflecting sustained blood-brain barrier disruption and neuroinflammatory processes. Our findings underscore the potential of CNS-targeted IgG autoantibodies as biomarkers of cumulative brain injury and immune dysregulation in blast-exposed populations. Further research is warranted to validate these markers in larger, more diverse cohorts, and to explore their utility in guiding interventions aimed at mitigating neuroinflammation, neuroendocrine dysfunction, and long-term neurodegenerative risks in military personnel and similarly exposed groups.
军事爆破人员经常暴露于重复性的低强度爆炸超压环境中,这使他们面临长期神经后遗症的风险增加。越来越多的证据表明,中枢神经系统(CNS)损伤后产生的循环性脑反应性自身抗体,可能既是累积损伤的生物标志物,也是继发性神经炎症的驱动因素。在本研究中,我们比较了有大量爆炸暴露经历的军事爆破人员(n = 18)和未暴露的军事对照人员(n = 19)的循环自身抗体谱。我们使用高灵敏度免疫测定法,对靶向胶质纤维酸性蛋白(GFAP)、髓鞘碱性蛋白(MBP)和垂体(PIT)抗原的IgG和IgM自身抗体进行了定量。与对照组相比,爆破人员的抗GFAP IgG(P < 0.001)和抗PIT IgG(P < 0.001)水平显著升高,而抗MBP自身抗体水平保持不变。对于任何IgM自身抗体测量,均未观察到显著差异。这些模式表明,重复性爆炸暴露会引发慢性适应性免疫反应,而非短暂的急性期反应。升高的IgG自身抗体突出了星形胶质细胞、髓鞘以及下丘脑 - 垂体轴在反复爆炸损伤后对持续免疫介导损伤的易感性,这可能反映了血脑屏障的持续破坏和神经炎症过程。我们的研究结果强调了中枢神经系统靶向IgG自身抗体作为爆炸暴露人群累积脑损伤和免疫失调生物标志物的潜力。有必要进行进一步研究,以在更大、更多样化的队列中验证这些标志物,并探索它们在指导旨在减轻军事人员及类似暴露群体的神经炎症、神经内分泌功能障碍和长期神经退行性风险的干预措施中的效用。