Suppr超能文献

用于预测超高性能混凝土(UHPC)抗压强度的增强高斯过程模型

Enhanced Gaussian Process Model for Predicting Compressive Strength of Ultra-High-Performance Concrete (UHPC).

作者信息

Zou Zhipeng, Peng Bin, Xie Lianghai, Song Shaoxun

机构信息

School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China.

出版信息

Materials (Basel). 2024 Dec 16;17(24):6140. doi: 10.3390/ma17246140.

Abstract

Ultra-high-performance concrete (UHPC) is widely used in engineering due to its exceptional mechanical properties, particularly compressive strength. Accurate prediction of the compressive strength is critical for optimizing mix proportions but remains challenging due to data dispersion, limited data availability, and complex material interactions. This study enhances the Gaussian Process (GP) model to address these challenges by incorporating Singular Value Decomposition (SVD) and Kalman Filtering and Smoothing (KF/KS). SVD improves data quality by extracting critical features, while KF/KS reduces data dispersion and align prediction with physical laws. The enhanced GP model predicts compressive strength with improved accuracy and quantifies uncertainty, offering significant advantages over traditional methods. The results demonstrate that the enhanced GP model outperforms other models, including artificial neural networks (ANN) and regression models, in terms of reliability and interpretability. This approach provides a robust tool for optimizing UHPC mix designs, reducing experimental costs, and ensuring structural performance.

摘要

超高性能混凝土(UHPC)因其卓越的力学性能,尤其是抗压强度,而在工程中得到广泛应用。准确预测抗压强度对于优化配合比至关重要,但由于数据离散、数据可用性有限以及材料相互作用复杂,这一预测仍具有挑战性。本研究通过结合奇异值分解(SVD)以及卡尔曼滤波与平滑(KF/KS)来增强高斯过程(GP)模型,以应对这些挑战。SVD通过提取关键特征来提高数据质量,而KF/KS则减少数据离散并使预测符合物理规律。增强后的GP模型能够更准确地预测抗压强度并量化不确定性,相较于传统方法具有显著优势。结果表明,在可靠性和可解释性方面,增强后的GP模型优于包括人工神经网络(ANN)和回归模型在内的其他模型。该方法为优化UHPC配合比设计、降低实验成本以及确保结构性能提供了一个强大的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44e1/11677787/53bf3ea7914c/materials-17-06140-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验