Suppr超能文献

考虑内部热生成的粘弹性介质疲劳失效频率依赖性的数值模拟

Numerical Simulation of the Frequency Dependence of Fatigue Failure for a Viscoelastic Medium Considering Internal Heat Generation.

作者信息

Kudo Natsuko, Sekino Takumi, Fikry M J Mohammad, Koyanagi Jun

机构信息

Department of Materials Science and Technology, Graduate School of Tokyo University of Science, 6-3-1, Niijuku Katsushika-ku, Tokyo 125-8585, Japan.

Department of Mechanical Engineering, The University of Akron, 244 Sumner St., Akron, OH 44325-3903, USA.

出版信息

Materials (Basel). 2024 Dec 19;17(24):6202. doi: 10.3390/ma17246202.

Abstract

Accurately predicting fatigue failure in CFRP laminates requires an understanding of the cyclic behavior of their resin matrix, which plays a crucial role in the materials' overall performance. This study focuses on the temperature elevation during the cyclic loadings of the resin, driven by inelastic deformations that increase the dissipated energy. At low loading frequencies, the dissipated energy is effectively released as heat, preventing significant temperature rise and maintaining a consistent, balanced thermal state. However, at higher frequencies, the rate of energy dissipation exceeds the system's ability to release heat, causing temperature accumulation and accelerating damage progression. To address this issue, the study incorporates non-recoverable strain into a fatigue simulation framework, enabling the accurate modeling of the temperature-dependent fatigue behavior. At 0.1 Hz, damage accumulates rapidly due to significant inelastic deformation per cycle. As the frequency increases to around 2 Hz, the number of cycles until failure rises, indicating reduced damage per cycle. Beyond 2 Hz, higher frequencies result in accelerated temperature rises and damage progression. These findings emphasize the strong link between the loading frequency, non-recoverable strain, and temperature elevation, providing a robust tool for analyzing resin behavior. This approach represents an advancement in simulating the fatigue behavior of resin across a range of frequencies, offering insights for more reliable fatigue life predictions.

摘要

准确预测碳纤维增强复合材料(CFRP)层压板的疲劳失效需要了解其树脂基体的循环行为,而树脂基体在材料的整体性能中起着关键作用。本研究聚焦于树脂循环加载过程中的温度升高,这是由增加耗散能量的非弹性变形驱动的。在低加载频率下,耗散能量有效地以热的形式释放,防止温度显著上升并维持一致、平衡的热状态。然而,在较高频率下,能量耗散速率超过了系统释放热量的能力,导致温度累积并加速损伤进展。为解决这一问题,该研究将不可恢复应变纳入疲劳模拟框架,从而能够准确模拟与温度相关的疲劳行为。在0.1赫兹时,由于每个循环中显著的非弹性变形,损伤迅速累积。随着频率增加到约2赫兹,直至失效的循环次数增加,表明每个循环中的损伤减少。超过2赫兹后,更高的频率导致温度加速上升和损伤进展。这些发现强调了加载频率、不可恢复应变和温度升高之间的紧密联系,为分析树脂行为提供了一个强大的工具。这种方法代表了在模拟树脂在一系列频率下的疲劳行为方面的进步,为更可靠的疲劳寿命预测提供了见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa52/11676379/4e307759d4c1/materials-17-06202-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验