Suppr超能文献

基于压电微运动的近场直写用于蛇形结构的可编程制造

Near-Field Direct Writing Based on Piezoelectric Micromotion for the Programmable Manufacturing of Serpentine Structures.

作者信息

Chen Xun, Zhang Xuanzhi, Sun Jianfeng, Zhang Rongguang, Liang Xuanyang, Long Jiecai, Yao Jingsong, Chen Xin, Wang Han, Zhang Yu, Leng Jiewu, Lu Renquan

机构信息

State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China.

School of Electromechnical Engineering, Guangdong University of Technology, Guangzhou 510006, China.

出版信息

Micromachines (Basel). 2024 Dec 7;15(12):1478. doi: 10.3390/mi15121478.

Abstract

Serpentine microstructures offer excellent physical properties, making them highly promising in applications in stretchable electronics and tissue engineering. However, existing fabrication methods, such as electrospinning and lithography, face significant challenges in producing microscale serpentine structures that are cost-effective, efficient, and controllable. These methods often struggle with achieving precise control over fiber morphology and scalability. In this study, we developed a near-field direct writing (NFDW) technique incorporating piezoelectric micromotion to enable the precise fabrication of serpentine micro-/nanofibers by incorporating micromotion control with macroscopic movement. Modifying the fiber structure allowed for adjustments to the mechanical properties, including tunable extensibility and distinct characteristics. Through the control of the frequency and amplitude of the piezoelectric signal, the printing errors were reduced to below 9.48% in the cycle length direction and 6.33% in the peak height direction. A predictive model for the geometrical extensibility of serpentine structures was derived from Legendre's incomplete elliptic integral of the second kind and incorporated an error correction factor, which significantly reduced the calculation errors in predicting geometric elongation, by 95.85%. The relationship between microstructure bending and biomimetic non-linear mechanical behavior was explored through tensile testing. By controlling the input electrical signals, highly ordered serpentine microstructures were successfully fabricated, demonstrating potential for use in biomimetic mechanical scaffolds.

摘要

蛇形微结构具有优异的物理性能,使其在可拉伸电子学和组织工程应用中极具前景。然而,现有的制造方法,如静电纺丝和光刻技术,在生产具有成本效益、高效且可控的微米级蛇形结构时面临重大挑战。这些方法在实现对纤维形态的精确控制和可扩展性方面往往存在困难。在本研究中,我们开发了一种结合压电微运动的近场直接写入(NFDW)技术,通过将微运动控制与宏观运动相结合,实现蛇形微/纳米纤维的精确制造。对纤维结构的修改可调整机械性能,包括可调的可扩展性和独特特性。通过控制压电信号的频率和幅度,在周期长度方向上的打印误差降低至9.48%以下,在峰值高度方向上降低至6.33%以下。从第二类勒让德不完全椭圆积分推导出蛇形结构几何可扩展性的预测模型,并纳入误差校正因子,这在预测几何伸长时显著降低了计算误差,降低了95.85%。通过拉伸试验探索了微观结构弯曲与仿生非线性力学行为之间的关系。通过控制输入电信号,成功制造出高度有序的蛇形微结构,展示了其在仿生机械支架中的应用潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d22/11727834/15b672659b49/micromachines-15-01478-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验