Suppr超能文献

双波段高吞吐量和高对比度全光拓扑逻辑门

Dual-Band High-Throughput and High-Contrast All-Optical Topology Logic Gates.

作者信息

Zhang Jinying, Si Yulin, Zhang Yexiaotong, Wang Bingnan, Wang Xinye

机构信息

Beijing Key Lab for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China.

Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314001, China.

出版信息

Micromachines (Basel). 2024 Dec 13;15(12):1492. doi: 10.3390/mi15121492.

Abstract

Optical computing offers advantages such as high bandwidth and low loss, playing a crucial role in signal processing, communication, and sensing applications. Traditional optical logic gates, based on nonlinear fibers and optical amplifiers, suffer from poor robustness and large footprints, hindering their on-chip integration. All-optical logic gates based on topological photonic crystals have emerged as a promising approach for developing robust and monolithic optical computing systems. Expanding topological photonic crystal logic gates from a single operating band to dual bands can achieve high throughput, significantly enhancing parallel computing capabilities. This study integrates the topological protection offered by valley photonic crystals with linear interference effects to design and implement seven optical computing logic gates on a silicon substrate. These gates, based on dual-band valley photonic crystal topological protection, include OR, XOR, NOT, NAND, NOR, and AND. The robustness of the implemented OR logic gates was verified in the presence of boundary defects. The results demonstrate that multi-band parallel computing all-optical logic gates can be achieved using topological photonic crystals, and these gates exhibit high robustness. The all-optical logic gates designed in this study hold significant potential for future applications in optical signal processing, optical communication, optical sensing, and other related areas.

摘要

光学计算具有高带宽和低损耗等优势,在信号处理、通信和传感应用中发挥着关键作用。基于非线性光纤和光放大器的传统光学逻辑门,存在鲁棒性差和占用空间大的问题,阻碍了它们的片上集成。基于拓扑光子晶体的全光逻辑门已成为开发鲁棒且单片集成光学计算系统的一种有前途的方法。将拓扑光子晶体逻辑门从单一工作波段扩展到双波段可以实现高吞吐量,显著增强并行计算能力。本研究将谷光子晶体提供的拓扑保护与线性干涉效应相结合,在硅衬底上设计并实现了七个光学计算逻辑门。这些基于双波段谷光子晶体拓扑保护的门包括或门(OR)、异或门(XOR)、非门(NOT)、与非门(NAND)、或非门(NOR)和与门(AND)。在存在边界缺陷的情况下验证了所实现或门的鲁棒性。结果表明,利用拓扑光子晶体可以实现多波段并行计算全光逻辑门,并且这些门具有高鲁棒性。本研究中设计的全光逻辑门在未来的光信号处理、光通信、光传感及其他相关领域具有巨大的应用潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c966/11727859/94ee164b2650/micromachines-15-01492-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验