Suppr超能文献

再入微观结构在调节液滴蒸发模式中的作用。

The Role of Re-Entrant Microstructures in Modulating Droplet Evaporation Modes.

作者信息

Vu Hoang Huy, Nguyen Nam-Trung, Kashaninejad Navid

机构信息

Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, 170 Kessels Road, Brisbane, QLD 4111, Australia.

出版信息

Micromachines (Basel). 2024 Dec 18;15(12):1507. doi: 10.3390/mi15121507.

Abstract

The evaporation dynamics of sessile droplets on re-entrant microstructures are critical for applications in microfluidics, thermal management, and self-cleaning surfaces. Re-entrant structures, such as mushroom-like shapes with overhanging features, trap air beneath droplets to enhance non-wettability. The present study examines the evaporation of a water droplet on silicon carbide (SiC) and silicon dioxide (SiO) re-entrant structures, focusing on the effects of material composition and solid area fraction on volume reduction, contact angle, and evaporation modes. Using surface free energy (SFE) as an indicator of wettability, we find that the low SFE of SiC promotes quick depinning and contact line retraction, resulting in shorter CCL phases across different structures. For instance, the CCL phase accounts for 55-59% of the evaporation time on SiC surfaces, while on SiO it extends to 51-68%, reflecting a 7-23% increase in duration due to stronger pinning effects. Additionally, narrower pillar gaps, which increase the solid area fraction, further stabilize droplets by extending both CCL and constant contact angle (CCA) phases, while wider gaps enable faster depinning and evaporation. These findings illustrate how hydrophobicity (via SFE) and structural geometry (via solid area fraction) influence microscale interactions, offering insights for designing surfaces with optimized liquid management properties.

摘要

凹腔微结构上静态液滴的蒸发动力学对于微流体、热管理和自清洁表面等应用至关重要。凹腔结构,如具有悬垂特征的蘑菇状形状,会在液滴下方捕获空气以增强非润湿性。本研究考察了水滴在碳化硅(SiC)和二氧化硅(SiO)凹腔结构上的蒸发情况,重点关注材料成分和固体面积分数对体积减小、接触角和蒸发模式的影响。以表面自由能(SFE)作为润湿性指标,我们发现SiC的低SFE促进了快速脱钉和接触线回缩,导致不同结构上的CCL阶段更短。例如,CCL阶段在SiC表面占蒸发时间的55 - 59%,而在SiO表面则延长至51 - 68%,这反映出由于更强的钉扎效应,持续时间增加了7 - 23%。此外,更窄的柱间距会增加固体面积分数,通过延长CCL和恒定接触角(CCA)阶段进一步稳定液滴,而更宽的间距则使脱钉和蒸发更快。这些发现说明了疏水性(通过SFE)和结构几何形状(通过固体面积分数)如何影响微观相互作用,并为设计具有优化液体管理特性的表面提供了见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75c4/11676758/6f6fe285af30/micromachines-15-01507-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验