Suppr超能文献

实验设计与人工神经网络在开发一种快速简便的用于测定血液肿瘤儿科患者氟康唑的高效液相色谱 - 紫外法及其在治疗药物监测中的应用。

The Application of the Design of Experiments and Artificial Neural Networks in the Development of a Fast and Straightforward HPLC-UV Method for Fluconazole Determination in Hemato-Oncologic Pediatric Patients and Its Adaptation to Therapeutic Drug Monitoring.

作者信息

Adamiszak Arkadiusz, Czyrski Andrzej, Sznek Bartosz, Grześkowiak Edmund, Bienert Agnieszka

机构信息

Department of Clinical Pharmacy and Biopharmacy, Poznan University of Medical Sciences, 60-806 Poznan, Poland.

Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland.

出版信息

Pharmaceuticals (Basel). 2024 Dec 12;17(12):1679. doi: 10.3390/ph17121679.

Abstract

This study aimed to develop an optimized and wide concentration range HPLC-UV method for fluconazole (FLU) determination and its adaptation for pharmacokinetics (PK) studies in the pediatric population. The following parameters of chromatographic separation were optimized: retention time, tailing factor, peak height, and the sample preconditioning parameter, such as recovery. The optimization process involved the use of a central composite design (CCD) and Box-Behnken design (BBD) in the design of experiments (DoE) approach and a multilayer perceptron (MLP) for artificial neural network (ANN) application. Statistical and PK analyses were performed using Statistica and PKanalix. The acetonitrile (ACN) concentration revealed the most significant factor influencing the retention time, tailing factor, and peak height of FLU and the internal standard. For recovery, the extracting agent's volume was the most significant factor. In most cases, the analysis conducted with the DoE and ANN indicated the same factors in a similar order regarding their impact on the analyzed variables. The optimization process allowed for achieving a wide range of determined concentrations (0.5-100 mg/L) and ~100% recovery. The developed method enabled PK analysis of 12 samples from three pediatric patients, proving its clinical usability. The estimated median clearance (CL) and volume of distribution (Vd) were 1.01 L/h and 18.64 L, respectively. DoE and ANNs are promising and useful tools in the optimization of sample preconditioning as well as the HPLC separation procedure. The investigated fluconazole determination method meets the European Medicines Agency (EMA) validation objectives and might be used in pediatric and adult PK studies.

摘要

本研究旨在开发一种优化的、宽浓度范围的高效液相色谱-紫外检测法用于氟康唑(FLU)测定,并使其适用于儿科人群的药代动力学(PK)研究。对色谱分离的以下参数进行了优化:保留时间、拖尾因子、峰高以及样品预处理参数,如回收率。优化过程涉及在实验设计(DoE)方法中使用中心复合设计(CCD)和Box-Behnken设计(BBD),以及在人工神经网络(ANN)应用中使用多层感知器(MLP)。使用Statistica和PKanalix进行统计分析和PK分析。乙腈(ACN)浓度显示出对FLU和内标物的保留时间、拖尾因子和峰高影响最显著的因素。对于回收率,萃取剂的体积是最显著的因素。在大多数情况下,用DoE和ANN进行的分析表明,就其对分析变量的影响而言,相同的因素以相似的顺序排列。优化过程使得能够实现宽范围的测定浓度(0.5 - 100 mg/L)和约100%的回收率。所开发的方法能够对三名儿科患者的12个样本进行PK分析,证明了其临床实用性。估计的中位清除率(CL)和分布容积(Vd)分别为1.01 L/h和18.64 L。DoE和人工神经网络是优化样品预处理以及高效液相色谱分离程序的有前景且有用的工具。所研究的氟康唑测定方法符合欧洲药品管理局(EMA)的验证目标,可用于儿科和成人PK研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bea6/11679493/41bcd8481fc1/pharmaceuticals-17-01679-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验