文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

揭示……的生物浸出多功能性

Unveiling the Bioleaching Versatility of .

作者信息

Tonietti Luca, Esposito Mattia, Cascone Martina, Barosa Bernardo, Fiscale Stefano, Muscari Tomajoli Maria Teresa, Sbaffi Tomasa, Santomartino Rosa, Covone Giovanni, Cordone Angelina, Rotundi Alessandra, Giovannelli Donato

机构信息

Department of Science and Technology, University Parthenope, 80143 Naples, Italy.

International PhD Programme/UNESCO Chair "Environment, Resources and Sustainable Development", 80143 Naples, Italy.

出版信息

Microorganisms. 2024 Nov 23;12(12):2407. doi: 10.3390/microorganisms12122407.


DOI:10.3390/microorganisms12122407
PMID:39770610
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11678928/
Abstract

is a Gram-negative bacterium that thrives in extreme acidic conditions. It has emerged as a key player in biomining and bioleaching technologies thanks to its unique ability to mobilize a wide spectrum of elements, such as Li, P, V, Cr, Fe, Ni, Cu, Zn, Ga, As, Mo, W, Pb, U, and its role in ferrous iron oxidation and reduction. catalyzes the extraction of elements by generating iron (III) ions in oxic conditions, which are able to react with metal sulfides. This review explores the bacterium's versatility in metal and elemental mobilization, with a focus on the mechanisms involved, encompassing its role in the recovery of industrially relevant elements from ores. The application of biomining technologies leveraging the bacterium's natural capabilities not only enhances element recovery efficiency, but also reduces reliance on conventional energy-intensive methods, aligning with the global trend towards more sustainable mining practices. However, its use in biometallurgical applications poses environmental issues through its effect on the pH levels in bioleaching systems, which produce acid mine drainage in rivers and lakes adjacent to mines. This dual effect underscores its potential to shape the future of responsible mining practices, including potentially in space, and highlights the importance of monitoring acidic releases in the environment.

摘要

是一种革兰氏阴性细菌,在极端酸性条件下生长旺盛。由于其具有独特的能力来调动多种元素,如锂、磷、钒、铬、铁、镍、铜、锌、镓、砷、钼、钨、铅、铀,以及在亚铁离子氧化和还原中的作用,它已成为生物采矿和生物浸出技术中的关键参与者。在有氧条件下通过生成铁(III)离子来催化元素的提取,这些铁(III)离子能够与金属硫化物发生反应。本综述探讨了该细菌在金属和元素调动方面的多功能性,重点关注所涉及的机制,包括其在从矿石中回收工业相关元素中的作用。利用该细菌天然能力的生物采矿技术的应用不仅提高了元素回收效率,还减少了对传统能源密集型方法的依赖,符合全球向更可持续采矿实践发展的趋势。然而,其在生物冶金应用中的使用通过对生物浸出系统中pH值水平的影响带来环境问题,这会在矿山附近的河流和湖泊中产生酸性矿山排水。这种双重影响凸显了其在塑造包括潜在太空采矿在内的负责任采矿实践未来的潜力,并强调了监测环境中酸性排放的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc7b/11678928/59579f526067/microorganisms-12-02407-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc7b/11678928/87fddbbba789/microorganisms-12-02407-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc7b/11678928/afa725c21aac/microorganisms-12-02407-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc7b/11678928/59579f526067/microorganisms-12-02407-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc7b/11678928/87fddbbba789/microorganisms-12-02407-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc7b/11678928/afa725c21aac/microorganisms-12-02407-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc7b/11678928/59579f526067/microorganisms-12-02407-g003.jpg

相似文献

[1]
Unveiling the Bioleaching Versatility of .

Microorganisms. 2024-11-23

[2]
Enhanced bioleaching of spent Li-ion batteries using A. ferrooxidans by application of external magnetic field.

J Environ Manage. 2024-9

[3]
Heavy metal resistance strategies of acidophilic bacteria and their acquisition: importance for biomining and bioremediation.

Biol Res. 2013

[4]
Genomic insights into the iron uptake mechanisms of the biomining microorganism Acidithiobacillus ferrooxidans.

J Ind Microbiol Biotechnol. 2005-12

[5]
Effect of ferrous iron loading on dewaterability, heavy metal removal and bacterial community of digested sludge by Acidithiobacillus ferrooxidans.

J Environ Manage. 2021-10-1

[6]
Do ferrous iron-oxidizing acidophiles ( spp.) disturb aerobic bioleaching of laterite ores by sulfur-oxidizing acidophiles ( spp.)?

Front Microbiol. 2024-4-9

[7]
Minimization of metal sulphides bioleaching from mine wastes into the aquatic environment.

Ecotoxicol Environ Saf. 2019-7-30

[8]
Bioleaching of realgar by Acidithiobacillus ferrooxidans using ferrous iron and elemental sulfur as the sole and mixed energy sources.

Bioresour Technol. 2010-11-19

[9]
Microbially Influenced Corrosion of Stainless Steel by Acidithiobacillus ferrooxidans Supplemented with Pyrite: Importance of Thiosulfate.

Appl Environ Microbiol. 2019-10-16

[10]
Reduction of arsenic content in a complex galena concentrate by Acidithiobacillus ferrooxidans.

BMC Biotechnol. 2004-10-13

引用本文的文献

[1]
Biotechnological Potential of Extremophiles: Environmental Solutions, Challenges, and Advancements.

Biology (Basel). 2025-7-11

[2]
Microbial metal physiology: ions to ecosystems.

Nat Rev Microbiol. 2025-7-25

本文引用的文献

[1]
From Genes to Bioleaching: Unraveling Sulfur Metabolism in Genus.

Genes (Basel). 2023-9-8

[2]
Vanadium in the Environment: Biogeochemistry and Bioremediation.

Environ Sci Technol. 2023-10-3

[3]
Reviewing the state of biosensors and lab-on-a- chip technologies: opportunities for extreme environments and space exploration.

Front Microbiol. 2023-8-17

[4]
Oxidoreductases and metal cofactors in the functioning of the earth.

Essays Biochem. 2023-8-11

[5]
Recovery of valuable metals from spent lithium-ion batteries using microbial agents for bioleaching: a review.

Front Microbiol. 2023-5-31

[6]
Accelerating bioleaching of tungsten mining wastes using indigenous acidophilic bacteria.

J Hazard Mater. 2023-7-15

[7]
A sustainable vanadium bioremediation strategy from aqueous media by two potential green microalgae.

Environ Pollut. 2023-4-15

[8]
A novel coating to avoid corrosion effect between eutectic gallium-indium alloy and heat sink metal for X-ray optics cooling.

Rev Sci Instrum. 2022-12-1

[9]
Microbially influenced tungsten mobilization and formation of secondary minerals in wolframite tailings.

J Hazard Mater. 2023-3-5

[10]
Progress in bioleaching: fundamentals and mechanisms of microbial metal sulfide oxidation - part A.

Appl Microbiol Biotechnol. 2022-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索