Instituto de Ingeniería Biológica y Médica, Escuelas de Ingeniería, Medicina y Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
Departamento de Ingeniería Hidráulica y Ambiental, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile.
Appl Microbiol Biotechnol. 2022 Nov;106(21):6933-6952. doi: 10.1007/s00253-022-12168-7. Epub 2022 Oct 4.
Bioleaching of metal sulfides is performed by diverse microorganisms. The dissolution of metal sulfides occurs via two chemical pathways, either the thiosulfate or the polysulfide pathway. These are determined by the metal sulfides' mineralogy and their acid solubility. The microbial cell enables metal sulfide dissolution via oxidation of iron(II) ions and inorganic sulfur compounds. Thereby, the metal sulfide attacking agents iron(III) ions and protons are generated. Cells are active either in a planktonic state or attached to the mineral surface, forming biofilms. This review, as an update of the previous one (Vera et al., 2013a), summarizes some recent discoveries relevant to bioleaching microorganisms, contributing to a better understanding of their lifestyle. These comprise phylogeny, chemical pathways, surface science, biochemistry of iron and sulfur metabolism, anaerobic metabolism, cell-cell communication, molecular biology, and biofilm lifestyle. Recent advances from genetic engineering applied to bioleaching microorganisms will allow in the future to better understand important aspects of their physiology, as well as to open new possibilities for synthetic biology applications of leaching microbial consortia. KEY POINTS: • Leaching of metal sulfides is strongly enhanced by microorganisms • Biofilm formation and extracellular polymer production influences bioleaching • Cell interactions in mixed bioleaching cultures are key for process optimization.
生物浸出金属硫化物是由多种微生物完成的。金属硫化物的溶解通过两种化学途径发生,即硫代硫酸盐途径或多硫化物途径。这些途径由金属硫化物的矿物学和酸溶性决定。微生物细胞通过氧化亚铁(II)离子和无机硫化合物来实现金属硫化物的溶解。由此产生了攻击金属硫化物的铁(III)离子和质子。细胞要么以浮游状态存在,要么附着在矿物表面形成生物膜。本综述是对上一篇综述(Vera 等人,2013a)的更新,总结了一些与生物浸出微生物相关的最新发现,有助于更好地了解它们的生活方式。这些包括系统发育、化学途径、表面科学、铁和硫代谢的生物化学、厌氧代谢、细胞间通讯、分子生物学和生物膜生活方式。遗传工程应用于生物浸出微生物的最新进展将使我们能够更好地理解它们生理学的重要方面,并为浸出微生物共生体的合成生物学应用开辟新的可能性。要点:• 微生物强烈促进金属硫化物的浸出。• 生物膜形成和胞外聚合物的产生影响生物浸出。• 混合生物浸出培养物中的细胞相互作用是优化过程的关键。