Hou Lingyu, Bai Xiangyu, Sima Zihe, Zhang Jiani, Yan Luyao, Li Ding, Jiang Yongguang
School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430078, China.
Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China.
Microorganisms. 2024 Nov 29;12(12):2454. doi: 10.3390/microorganisms12122454.
Iron, Earth's most abundant redox-active metal, undergoes both abiotic and microbial redox reactions that regulate the formation, transformation, and dissolution of iron minerals. The electron transfer between ferrous iron (Fe(II)) and ferric iron (Fe(III)) is critical for mineral dynamics, pollutant remediation, and global biogeochemical cycling. Bacteria play a significant role, especially in anaerobic Fe(II) oxidation, contributing to Fe(III) mineral formation in oxygen-depleted environments. In iron-rich, neutral anaerobic settings, microbial nitrate-reducing Fe(II) oxidation (NRFO) and iron reduction processes happen simultaneously. This study used MR-1 to create an anaerobic NRFO system between Fe(II) and nitrate, revealing concurrent Fe(II) oxidation and nitrate reduction. Both gene-mediated biological Fe(II) oxidation and chemical Fe(II) oxidation, facilitated by nitrite (a byproduct of nitrate reduction), were observed. The gene cluster was linked to this process. At low Fe(II) concentrations, toxicity and mineral precipitation inhibited nitrate reduction by MR-1, whereas high Fe(II) levels led to Fe(II) oxidation, resulting in cell encrustation, which further constrained nitrate reduction.
铁是地球上含量最丰富的具有氧化还原活性的金属,它会发生非生物和微生物氧化还原反应,这些反应调节着铁矿物的形成、转化和溶解。亚铁(Fe(II))和铁离子(Fe(III))之间的电子转移对于矿物动态、污染物修复和全球生物地球化学循环至关重要。细菌发挥着重要作用,尤其是在厌氧铁(II)氧化过程中,有助于在缺氧环境中形成Fe(III)矿物。在富含铁的中性厌氧环境中,微生物硝酸盐还原铁(II)氧化(NRFO)和铁还原过程同时发生。本研究使用MR-1构建了一个铁(II)与硝酸盐之间的厌氧NRFO系统,揭示了铁(II)氧化和硝酸盐还原同时发生的现象。观察到基因介导的生物铁(II)氧化以及由亚硝酸盐(硝酸盐还原的副产物)促进的化学铁(II)氧化。该基因簇与这一过程相关。在低铁(II)浓度下,毒性和矿物沉淀抑制了MR-1的硝酸盐还原,而高铁(II)水平导致铁(II)氧化,导致细胞结壳,这进一步限制了硝酸盐还原。