Segneanu Adina-Elena, Bradu Ionela Amalia, Calinescu Bocanici Mihaela Simona, Vlase Gabriela, Vlase Titus, Herea Daniel-Dumitru, Buema Gabriela, Mihailescu Maria, Grozescu Ioan
Institute for Advanced Environmental Research, West University of Timisoara (ICAM-WUT), 4 Oituz St., 300086 Timișoara, Romania.
Faculty of Chemistry, Biology, Geography, West University of Timisoara (ICAM-WUT), Pestalozzi St. 16, 300115 Timișoara, Romania.
Polymers (Basel). 2024 Dec 12;16(24):3469. doi: 10.3390/polym16243469.
Designing new engineered materials derived from waste is essential for effective environmental remediation and reducing anthropogenic pollution in our economy. This study introduces an innovative method for remediating metal-contaminated water, using two distinct waste types: one biowaste (eggshell) and one industrial waste (fly ash). We synthesized three novel, cost-effective nanoadsorbent types, including two new tertiary composites and two biopolymer-based composites (specifically k-carrageenan and chitosan), which targeted chromium removal from aqueous solutions. SEM analysis reveals that in the first composite, EMZ, zeolite, and magnetite nanoparticles are successfully integrated into the porous structure of the eggshell. In the second composite (FMZ), fly ash and magnetite particles are similarly loaded within the zeolite pores. Each biopolymer-based composite is derived by incorporating the corresponding tertiary composite (FMZ or EMZ) into the biopolymer framework. Structural modifications of the eggshell, zeolite, chitosan, and k-carrageenan resulted in notable increases in specific surface area, as confirmed by BET analysis. These enhancements significantly improve chromium adsorption efficiency for each adsorbent type developed. The adsorption performances achieved are as follows: EMZ (89.76%), FMZ (84.83%), EMZCa (96.64%), FMZCa (94.87%), EMZC (99.64%), and FMZC (97.67%). The findings indicate that chromium adsorption across all adsorbent types occurs via a multimolecular layer mechanism, which is characterized as spontaneous and endothermic. Desorption studies further demonstrate the high reusability of these nanomaterials. Overall, this research underscores the potential of utilizing waste materials for new performant engineered low-cost composites and biocomposites for environmental bioremediation applications.
设计源自废物的新型工程材料对于有效的环境修复和减少经济中的人为污染至关重要。本研究介绍了一种修复金属污染水的创新方法,使用两种不同类型的废物:一种是生物废物(蛋壳),另一种是工业废物(粉煤灰)。我们合成了三种新型、具有成本效益的纳米吸附剂类型,包括两种新型三元复合材料和两种生物聚合物基复合材料(具体为κ-卡拉胶和壳聚糖),其目标是从水溶液中去除铬。扫描电子显微镜分析表明,在第一种复合材料EMZ中,沸石和磁铁矿纳米颗粒成功地整合到蛋壳的多孔结构中。在第二种复合材料(FMZ)中,粉煤灰和磁铁矿颗粒同样负载在沸石孔内。每种生物聚合物基复合材料是通过将相应的三元复合材料(FMZ或EMZ)纳入生物聚合物框架而衍生出来的。蛋壳、沸石、壳聚糖和κ-卡拉胶的结构改性导致比表面积显著增加,这通过BET分析得到证实。这些增强显著提高了所开发的每种吸附剂类型的铬吸附效率。所实现的吸附性能如下:EMZ(89.76%)、FMZ(84.83%)、EMZCa(96.64%)、FMZCa(94.87%)、EMZC(99.64%)和FMZC(97.67%)。研究结果表明,所有吸附剂类型对铬的吸附均通过多分子层机制发生,其特征为自发发自发且吸热。解吸研究进一步证明了这些纳米材料的高可重复使用性。总体而言,本研究强调了利用废料制备新型高性能工程低成本复合材料和生物复合材料用于环境生物修复应用的潜力。