文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

氧化锌和氧化锌-银杂化纳米粒子对新形成的聚甲基丙烯酸甲酯(PMMA)的改性及其抗真菌活性

Antifungal Activity of Newly Formed Polymethylmethacrylate (PMMA) Modification by Zinc Oxide and Zinc Oxide-Silver Hybrid Nanoparticles.

作者信息

Mazur Marek Witold, Grudniak Anna, Szałaj Urszula, Szerszeń Marcin, Mizeracki Jan, Cierech Mariusz, Mierzwińska-Nastalska Elżbieta, Kostrzewa-Janicka Jolanta

机构信息

Department of Prosthodontics, Medical University of Warsaw, 02-097 Warsaw, Poland.

Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland.

出版信息

Polymers (Basel). 2024 Dec 17;16(24):3512. doi: 10.3390/polym16243512.


DOI:10.3390/polym16243512
PMID:39771364
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11677632/
Abstract

Incorporating nanoparticles into denture materials shows promise for the prevention of denture-associated fungal infections. This study investigates the antifungal properties of acrylic modified with microwave-sintered ZnO-Ag nanoparticles. ZnO-Ag nanoparticles (1% and 2.5% wt.) were synthesized via microwave solvothermal synthesis (MSS). Nanoparticles were characterized for phase purity, specific surface area (SSA), density, morphology, and elemental composition. ZnO and ZnO-Ag nanoparticles were added to acrylic material (PMMA) at concentrations of 1% and 2.5% and polymerized. Pure PMMA (control) and obtained PMMA-nanocomposites were cut into homogeneous 10 × 10 mm samples. Antifungal activity of nanoparticles and PMMA-nanocomposites against was tested using minimal inhibitory concentration (MIC) determination, and biofilm formation was assessed using crystal violet staining followed by absorbance measurements. Laboratory tests confirmed phase purity and uniform, spherical particle distribution. MIC results show antifungal activity of 1% Ag nanoparticles and the PMMA-2.5% (ZnO-1% Ag) nanocomposite. PMMA-1% (ZnO-1% Ag) nanocomposite and 1% ZnO-Ag nanoparticles are efficient in preventing biofilm formation. However, ZnO nanoparticles showed antibiofilm activity, and the PMMA-ZnO nanocomposite does not protect against biofilm deposition. Incorporating hybrid ZnO-Ag nanoparticles into PMMA is a promising antibiofilm method, especially with ZnO-1% Ag nanoparticles.

摘要

将纳米颗粒掺入义齿材料中有望预防义齿相关真菌感染。本研究调查了用微波烧结的ZnO-Ag纳米颗粒改性的丙烯酸树脂的抗真菌性能。通过微波溶剂热合成(MSS)合成了1%和2.5%(重量)的ZnO-Ag纳米颗粒。对纳米颗粒的相纯度、比表面积(SSA)、密度、形态和元素组成进行了表征。将ZnO和ZnO-Ag纳米颗粒以1%和2.5%的浓度添加到丙烯酸材料(PMMA)中并进行聚合。将纯PMMA(对照)和所得的PMMA纳米复合材料切成均匀的10×10mm样品。使用最小抑菌浓度(MIC)测定法测试纳米颗粒和PMMA纳米复合材料对的抗真菌活性,并使用结晶紫染色后进行吸光度测量来评估生物膜形成。实验室测试证实了相纯度以及颗粒分布均匀且呈球形。MIC结果显示1%Ag纳米颗粒和PMMA-2.5%(ZnO-1%Ag)纳米复合材料具有抗真菌活性。PMMA-1%(ZnO-1%Ag)纳米复合材料和1%ZnO-Ag纳米颗粒在预防生物膜形成方面很有效。然而,ZnO纳米颗粒显示出抗生物膜活性,而PMMA-ZnO纳米复合材料不能防止生物膜沉积。将混合的ZnO-Ag纳米颗粒掺入PMMA是一种有前景的抗生物膜方法,尤其是使用ZnO-1%Ag纳米颗粒时。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20df/11677632/a78cd2d6a6f7/polymers-16-03512-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20df/11677632/934c7f8a0a99/polymers-16-03512-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20df/11677632/2670969288a8/polymers-16-03512-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20df/11677632/be8c0c49b5f4/polymers-16-03512-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20df/11677632/cc71d011ed6b/polymers-16-03512-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20df/11677632/069c2fcf0db0/polymers-16-03512-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20df/11677632/83ed996f718d/polymers-16-03512-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20df/11677632/89a4fd72cf30/polymers-16-03512-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20df/11677632/a78cd2d6a6f7/polymers-16-03512-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20df/11677632/934c7f8a0a99/polymers-16-03512-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20df/11677632/2670969288a8/polymers-16-03512-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20df/11677632/be8c0c49b5f4/polymers-16-03512-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20df/11677632/cc71d011ed6b/polymers-16-03512-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20df/11677632/069c2fcf0db0/polymers-16-03512-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20df/11677632/83ed996f718d/polymers-16-03512-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20df/11677632/89a4fd72cf30/polymers-16-03512-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20df/11677632/a78cd2d6a6f7/polymers-16-03512-g008.jpg

相似文献

[1]
Antifungal Activity of Newly Formed Polymethylmethacrylate (PMMA) Modification by Zinc Oxide and Zinc Oxide-Silver Hybrid Nanoparticles.

Polymers (Basel). 2024-12-17

[2]
Significance of polymethylmethacrylate (PMMA) modification by zinc oxide nanoparticles for fungal biofilm formation.

Int J Pharm. 2016-6-21

[3]
Mechanical and Physicochemical Properties of Newly Formed ZnO-PMMA Nanocomposites for Denture Bases.

Nanomaterials (Basel). 2018-5-6

[4]
Preparation and characterization of ZnO-PMMA resin nanocomposites for denture bases.

Acta Bioeng Biomech. 2016

[5]
Chitosan coated Ag/ZnO nanocomposite and their antibiofilm, antifungal and cytotoxic effects on murine macrophages.

Microb Pathog. 2016-11

[6]
Facile synthesis of silver modified zinc oxide nanocomposite: An efficient visible light active nanomaterial for bacterial inhibition and dye degradation.

Photodiagnosis Photodyn Ther. 2021-12

[7]
Zinc Oxide Nanoparticles Cytotoxicity and Release from Newly Formed PMMA-ZnO Nanocomposites Designed for Denture Bases.

Nanomaterials (Basel). 2019-9-15

[8]
Evaluate the Effect of Zinc Oxide and Silver Nanoparticles on Biofilm and icaA Gene Expression in Methicillin-Resistant Staphylococcus aureus Isolated From Burn Wound Infection.

J Burn Care Res. 2020-11-30

[9]
Antibacterial Property of Composites of Reduced Graphene Oxide with Nano-Silver and Zinc Oxide Nanoparticles Synthesized Using a Microwave-Assisted Approach.

Int J Mol Sci. 2019-10-29

[10]
Antioxidant, anti-inflammatory, and wound healing effects of topical silver-doped zinc oxide and silver oxide nanocomposites.

Int J Pharm. 2022-4-5

引用本文的文献

[1]
Sol-Gel-Derived Silica/Alumina Particles for Enhancing the Mechanical Properties of Acrylate Composite Materials.

Gels. 2025-7-24

本文引用的文献

[1]
Observation of excellent photocatalytic and antibacterial activity of Ag doped ZnO nanoparticles.

RSC Adv. 2024-10-17

[2]
Use of Nanoparticles in Regenerative Dentistry: A Systematic Review.

Biomimetics (Basel). 2024-4-18

[3]
Antibacterial and Photocatalytic Activity of ZnO/Au and ZnO/Ag Nanocomposites.

Int J Mol Sci. 2023-11-29

[4]
Emerging Applications of Nanotechnology in Healthcare and Medicine.

Molecules. 2023-9-14

[5]
A comprehensive review on potential applications of metallic nanoparticles as antifungal therapies to combat human fungal diseases.

Saudi Pharm J. 2023-9

[6]
Color Stability of Zinc Oxide Poly(methyl methacrylate) Nanocomposite-A New Biomaterial for Denture Bases.

Polymers (Basel). 2022-11-17

[7]
Effects of incorporation of nanoparticles into dental acrylic resins on antimicrobial and physico-mechanical properties: A meta-analysis of studies.

J Oral Biol Craniofac Res. 2022

[8]
Fabrication, characterization and high photocatalytic activity of Ag-ZnO heterojunctions under UV-visible light.

RSC Adv. 2021-8-10

[9]
Antibiofilm Activities of Biogenic Silver Nanoparticles Against .

Front Microbiol. 2022-1-7

[10]
Characterization and evaluation of a novel silver nanoparticles-loaded polymethyl methacrylate denture base: In vitro and in vivo animal study.

Dent Mater J. 2021-9-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索