Thue Pascal S, Wamba Alfred G N, Mello Beatris L, Machado Fernando M, Petroman Karoline F, Nadaleti Willian Cézar, Andreazza Robson, Dos Reis Glaydson S, Abatal Mohamed, Lima Eder C
Environmental Science Graduate Program, Engineering Center, Federal University of Pelotas (UFPel), 989 Benjamin Constant St., Pelotas 96010-020, RS, Brazil.
Department of Process Engineering, Saint Jerome Catholic University Institute, Av. Akwa Koumassi, Douala BP 5949, Cameroon.
Polymers (Basel). 2024 Dec 19;16(24):3538. doi: 10.3390/polym16243538.
This study reported a one-spot preparation of magnetic composite carbon (MCC@Fe) from microcrystalline cellulose (MC). The pure cellulose was impregnated in iron (III) chloride solution and carbonized at 650 °C. The MCC@Fe composite adsorbent underwent various characterization techniques. XRD identified nanostructured FeO particles with an average crystallite size of 34.3 nm embedded in the core subunits of the material. FESEM images indicated a rough and irregular surface, with some cavities along its surface, incorporating FeO nanoparticles, while EDS analysis confirmed the presence of elements like Fe, C, and O. Notably, combining thermal and chemical treatments produces a composite with more pores and a high specific surface area (500.0 m g) compared to MC (1.5 m/g). VSM analysis confirmed the magnetic properties (0.76 emu/g), while the Hydrophobic Index () showed that MCC@Fe was hydrophobic ( 1.395). The adsorption studies consisted of kinetic, mass transfer, equilibrium, and thermodynamics studies. Kinetic study of the adsorption of paracetamol on MCC@Fe composite proved to be rapid, and the time necessary for covering 95% of the surface (t) was lower than 27 min following the fractal-like pseudo-first-order model (FPFO). Liu's isotherm proved to be the most appropriate for understanding the adsorption equilibrium. Remarkably, the maximum sorption capacity (Q) of paracetamol was 34.78 mg g at 45 °C. The Δ° value (+27.00 kJ/mol) and the negative Δ° values were consistent with the physisorption mechanism and favorable process. Furthermore, the mass transfer mechanism showed that the transfer is governed by the intraparticle diffusion model, with surface diffusion being the rate-limiting step when considering the number greater than 100. This research displayed a single-route production of inexpensive magnetic nano adsorbents capable of efficiently eliminating paracetamol from aqueous environments.
本研究报道了一种由微晶纤维素(MC)制备磁性复合碳(MCC@Fe)的单点制备方法。将纯纤维素浸渍在氯化铁(III)溶液中,并在650℃下碳化。对MCC@Fe复合吸附剂进行了各种表征技术研究。X射线衍射(XRD)确定了平均晶粒尺寸为34.3nm的纳米结构FeO颗粒嵌入材料的核心亚基中。场发射扫描电子显微镜(FESEM)图像显示表面粗糙且不规则,表面有一些空洞,包含FeO纳米颗粒,而能谱分析(EDS)证实了Fe、C和O等元素的存在。值得注意的是,与MC(1.5m²/g)相比,热化学处理相结合产生的复合材料具有更多的孔隙和高比表面积(500.0m²/g)。振动样品磁强计(VSM)分析证实了其磁性(0.76emu/g),而疏水指数()表明MCC@Fe具有疏水性(1.395)。吸附研究包括动力学、传质、平衡和热力学研究。对扑热息痛在MCC@Fe复合材料上吸附的动力学研究证明是快速的,按照类分形伪一级模型(FPFO),覆盖95%表面所需的时间(t)低于27分钟。刘等温线被证明最适合理解吸附平衡。值得注意的是,扑热息痛在45℃时的最大吸附容量(Q)为34.78mg/g。Δ°值(+27.00kJ/mol)和负的Δ°值与物理吸附机制和有利过程一致。此外,传质机制表明传质受颗粒内扩散模型控制,当考虑大于100的数量时,表面扩散是限速步骤。本研究展示了一种单路线生产廉价磁性纳米吸附剂的方法,该吸附剂能够有效地从水环境中去除扑热息痛。