Suppr超能文献

一种通过熔丝制造3D打印增材制造的新型聚合物混合负泊松比结构:基于机器学习的能量吸收预测与优化

A New Polymeric Hybrid Auxetic Structure Additively Manufactured by Fused Filament Fabrication 3D Printing: Machine Learning-Based Energy Absorption Prediction and Optimization.

作者信息

Hasanzadeh Rezgar

机构信息

Department of Mechanical Engineering, Kermanshah University of Technology, Kermanshah 6715685420, Iran.

出版信息

Polymers (Basel). 2024 Dec 20;16(24):3565. doi: 10.3390/polym16243565.

Abstract

The significance of this paper is an investigation into the design, development, and optimization of a new polymeric hybrid auxetic structure by additive manufacturing (AM). This work will introduce an innovative class of polymeric hybrid auxetic structure by the integration of an arrow-head unit cell into a missing rib unit cell, which will be fabricated using fused filament fabrication (FFF) technique, that is, one subset of AM. The auxetic performance of the structure is validated through the measurement of its negative Poisson's ratio, confirming its potential for enhanced energy absorption. A chain of regression, linear, and quadratic polynomial machine learning algorithms are used to predict and optimize the energy absorption capability at variant processing conditions. Amongst them, the polynomial regression model stands out with an R-squared value of 92.46%, reflecting an excellent predictive capability for energy absorption of additively manufactured polymeric hybrid auxetic structure. The optimization technique revealed that the printing speed of 80 mm/s and layer height of 200 µm were the critical values to achieve a maximum amount of energy absorption at 5.954 kJ/m, achieved at a printing temperature of 244.65 °C. Such results also contribute to the development of AM, since they show not only the potential for energy absorption of polymeric hybrid auxetic structures but also how effective machine learning is in the optimization of the AM process.

摘要

本文的意义在于通过增材制造(AM)对一种新型聚合物混合负泊松比结构进行设计、开发和优化。这项工作将通过将箭头形单胞集成到缺肋单胞中,引入一种创新的聚合物混合负泊松比结构,该结构将采用熔融沉积成型(FFF)技术制造,FFF是增材制造的一个子集。通过测量其负泊松比验证了该结构的负泊松比性能,证实了其增强能量吸收的潜力。使用一系列回归、线性和二次多项式机器学习算法来预测和优化不同加工条件下的能量吸收能力。其中,多项式回归模型表现突出,R平方值为92.46%,反映出其对增材制造的聚合物混合负泊松比结构的能量吸收具有出色的预测能力。优化技术表明,80mm/s的打印速度和200µm的层高是在244.65°C的打印温度下实现5.954kJ/m最大能量吸收量的关键值。这些结果也有助于增材制造的发展,因为它们不仅展示了聚合物混合负泊松比结构的能量吸收潜力,还展示了机器学习在增材制造工艺优化中的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9cd/11679801/d1367d7f85b1/polymers-16-03565-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验