Suppr超能文献

各向异性超材料的疲劳性能。

Fatigue performance of auxetic meta-biomaterials.

机构信息

Department of Biomechanical Engineering, Delft University of Technology, Delft, Netherlands.

3D Systems - LayerWise NV, Leuven, Belgium.

出版信息

Acta Biomater. 2021 May;126:511-523. doi: 10.1016/j.actbio.2021.03.015. Epub 2021 Mar 9.

Abstract

Meta-biomaterials offer a promising route towards the development of life-lasting implants. The concept aims to achieve solutions that are ordinarily impossible, by offering a unique combination of mechanical, mass transport, and biological properties through the optimization of their small-scale geometrical and topological designs. In this study, we primarily focus on auxetic meta-biomaterials that have the extraordinary ability to expand in response to axial tension. This could potentially improve the longstanding problem of implant loosening, if their performance can be guaranteed in cyclically loaded conditions. The high-cycle fatigue performance of additively manufactured (AM) auxetic meta-biomaterials made from commercially pure titanium (CP-Ti) was therefore studied. Small variations in the geometry of the re-entrant hexagonal honeycomb unit cell and its relative density resulted in twelve different designs (relative density: ~5-45%, re-entrant angle = 10-25°, Poisson's ratio = -0.076 to -0.504). Micro-computed tomography, scanning electron microscopy and mechanical testing were used to respectively measure the morphological and quasi-static properties of the specimens before proceeding with compression-compression fatigue testing. These auxetic meta-biomaterials exhibited morphological and mechanical properties that are deemed appropriate for bone implant applications (elastic modulus = 66.3-5648 MPa, yield strength = 1.4-46.7 MPa, pore size = 1.3-2.7 mm). With an average maximum stress level of 0.47 σ at 10 cycles (range: 0.35 σσ- 0.82 σσ), the auxetic structures characterized here are superior to many other non-auxetic meta-biomaterials made from the same material. The optimization of the printing process and the potential application of post-processing treatments could improve their performance in cyclically loaded settings even further. STATEMENT OF SIGNIFICANCE: Auxetic meta-biomaterials have a negative Poisson's ratio and, therefore, expand laterally in response to axial tension. Recently, they have been found to restore bone-implant contact along the lateral side of a hip stem. As a result, the bone will be compressed along both of the implant's contact lines, thereby actively reducing the risk of implant failure. In this case the material will be subjected to cyclic loading, for which no experimental data has been reported yet. Here, we present the first ever study of the fatigue performance of additively manufactured auxetic meta-biomaterials based on the re-entrant hexagonal honeycomb. These results will advance the adoption of auxetic meta-biomaterials in load-bearing applications, such as the hip stem, to potentially improve implant longevity.

摘要

元生物材料为开发持久的植入物提供了一条有前景的途径。该概念旨在通过优化其小尺度几何和拓扑设计,提供机械、质量传递和生物特性的独特组合,从而实现通常不可能的解决方案。在本研究中,我们主要关注具有响应轴向拉伸而扩展的非凡能力的各向异性元生物材料。如果能够保证它们在循环加载条件下的性能,这可能会改善植入物松动的长期问题。因此,研究了由商业纯钛(CP-Ti)制成的增材制造(AM)各向异性元生物材料的高周疲劳性能。通过在倒六边形蜂窝单元的几何形状和相对密度上进行微小变化,得到了十二种不同的设计(相对密度:5-45%,倒陷角:10-25°,泊松比:-0.076 至-0.504)。微计算机断层扫描、扫描电子显微镜和力学测试分别用于在进行压缩-压缩疲劳测试之前测量样品的形态和准静态特性。这些各向异性元生物材料表现出被认为适合骨植入应用的形态和力学性能(弹性模量=66.3-5648MPa,屈服强度=1.4-46.7MPa,孔径=1.3-2.7mm)。在 10 个循环时,平均最大应力水平为 0.47σ(范围为 0.35σ至 0.82σ),这里表征的各向异性结构优于许多其他由相同材料制成的非各向异性元生物材料。进一步优化打印工艺和潜在的后处理处理应用可能会进一步提高它们在循环加载环境中的性能。 意义声明:各向异性元生物材料具有负泊松比,因此会响应轴向拉伸而横向扩展。最近,人们发现它们可以恢复髋关节柄的侧向骨-植入物接触。因此,骨将沿着植入物的两个接触线被压缩,从而主动降低植入物失效的风险。在这种情况下,材料将受到循环加载的作用,目前还没有报告关于这种情况的实验数据。在这里,我们首次提出了基于倒六边形蜂窝的增材制造各向异性元生物材料的疲劳性能研究。这些结果将推动各向异性元生物材料在髋关节柄等承重应用中的采用,从而有可能提高植入物的寿命。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验