Cipa Janis, Endzelins Edgars, Abols Arturs, Romanchikova Nadezda, Line Aija, Jenster Guido W, Mozolevskis Gatis, Rimsa Roberts
Institute of Solid State Physics, University of Latvia, 8 Kengaraga Str., LV-1063 Riga, Latvia.
Cellbox Labs LLC, 8 Kengaraga Str., LV-1063 Riga, Latvia.
Polymers (Basel). 2024 Dec 21;16(24):3579. doi: 10.3390/polym16243579.
Extracellular vesicles (EVs) are promising biomarkers for diagnosing complex diseases such as cancer and neurodegenerative disorders. Yet, their clinical application is hindered by challenges in isolating cancer-derived EVs efficiently due to their broad size distribution in biological samples. This study introduces a microfluidic device fabricated using off-stoichiometry thiol-ene and cyclic olefin copolymer, addressing the absorption limitations of polydimethylsiloxane (PDMS). The device streamlines a standard laboratory assay into a semi-automated microfluidic chip, integrating sample mixing and magnetic particle separation. Using the microfluidic device, the binding kinetics between EVs and anti-CD9 nanobodies were measured for the first time. Based on the binding kinetics, already after 10 min the EV capture was saturated and comparable to standard laboratory assays, offering a faster alternative to antibody-based immunomagnetic protocols. Furthermore, this study reveals the binding kinetics of EVs to anti-CD9 nanobodies for the first time. Our findings demonstrate the potential of the microfluidic device to enhance clinical diagnostics by offering speed and reducing manual labor without compromising accuracy.
细胞外囊泡(EVs)是诊断癌症和神经退行性疾病等复杂疾病的有前景的生物标志物。然而,由于它们在生物样品中的大小分布广泛,有效分离癌症来源的EVs面临挑战,这阻碍了它们的临床应用。本研究介绍了一种使用非化学计量硫醇-烯和环烯烃共聚物制造的微流控装置,解决了聚二甲基硅氧烷(PDMS)的吸附限制。该装置将标准实验室检测简化为半自动化微流控芯片,集成了样品混合和磁性颗粒分离。使用该微流控装置,首次测量了EVs与抗CD9纳米抗体之间的结合动力学。基于结合动力学,仅10分钟后EV捕获就达到饱和,且与标准实验室检测相当,为基于抗体的免疫磁协议提供了一种更快的替代方法。此外,本研究首次揭示了EVs与抗CD9纳米抗体的结合动力学。我们的研究结果证明了微流控装置通过提高速度和减少人工操作而不影响准确性来增强临床诊断的潜力。