Suppr超能文献

用于轻量级生物启发式密钥生成与加密的融合多域与自适应变分模态分解心电图特征提取

Fused Multi-Domains and Adaptive Variational Mode Decomposition ECG Feature Extraction for Lightweight Bio-Inspired Key Generation and Encryption.

作者信息

Agbehadji Israel Edem, Millham Richard C, Freeman Emmanuel, Wu Wanqing, Zhang Xianbin

机构信息

Honorary Research Fellow, Faculty of Accounting and Informatics, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa.

ICT and Society Research Group, Department of Information Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa.

出版信息

Sensors (Basel). 2024 Dec 11;24(24):7926. doi: 10.3390/s24247926.

Abstract

Security is one of the increasingly significant issues given advancements in technology that harness data from multiple devices such as the internet of medical devices. While protecting data from unauthorized user access, several techniques are used including fingerprints, passwords, and others. One of the techniques that has attracted much attention is the use of human features, which has proven to be most effective because of the difficulties in impersonating human-related features. An example of a human-related attribute includes the electrical signal generated from the heart, mostly referred to as an Electrocardiogram (ECG) signal. The methods to extract features from ECG signals are time domain-based; however, the challenge with relying only on the time-domain or frequency-domain method is the inability to capture the intra-leading relationship of Variational Mode Decomposition signals. In this research, fusing multiple domains ECG feature and adaptive Variational Mode Decomposition approaches are utilized to mitigate the challenge of losing the intra-leading correlations of mode decompositions, which might reduce the robustness of encryption algorithms. The features extracted using the reconstructed signal have a mean (0.0004), standard deviation (0.0391), skewness (0.1562), and kurtosis (1.2205). Among the lightweight encryption methods considered, Chacha20 has a total execution time of 27µs. The study proposes a lightweight encryption technique based on the fused vector representation of extracted features to provide an encryption scheme in addition to a bio-inspired key generation technique for data encryption.

摘要

随着利用来自多个设备(如医疗设备物联网)数据的技术不断进步,安全成为日益重要的问题之一。在保护数据免受未经授权的用户访问时,会使用多种技术,包括指纹、密码等。其中备受关注的技术之一是利用人体特征,由于难以模仿与人类相关的特征,事实证明这种技术最为有效。与人类相关的属性的一个例子包括心脏产生的电信号,通常称为心电图(ECG)信号。从ECG信号中提取特征的方法是基于时域的;然而,仅依赖时域或频域方法面临的挑战是无法捕捉变分模态分解信号的导联内关系。在本研究中,利用融合多域ECG特征和自适应变分模态分解方法来缓解模式分解中导联内相关性丢失的挑战,这可能会降低加密算法的鲁棒性。使用重构信号提取的特征的均值为(0.0004),标准差为(0.0391),偏度为(0.1562),峰度为(1.2205)。在所考虑的轻量级加密方法中,ChaCha20的总执行时间为27微秒。该研究提出了一种基于提取特征的融合向量表示的轻量级加密技术,以提供一种加密方案以及一种用于数据加密的受生物启发的密钥生成技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5851/11680072/82df08176a42/sensors-24-07926-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验