文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Fused Multi-Domains and Adaptive Variational Mode Decomposition ECG Feature Extraction for Lightweight Bio-Inspired Key Generation and Encryption.

作者信息

Agbehadji Israel Edem, Millham Richard C, Freeman Emmanuel, Wu Wanqing, Zhang Xianbin

机构信息

Honorary Research Fellow, Faculty of Accounting and Informatics, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa.

ICT and Society Research Group, Department of Information Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa.

出版信息

Sensors (Basel). 2024 Dec 11;24(24):7926. doi: 10.3390/s24247926.


DOI:10.3390/s24247926
PMID:39771663
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11680072/
Abstract

Security is one of the increasingly significant issues given advancements in technology that harness data from multiple devices such as the internet of medical devices. While protecting data from unauthorized user access, several techniques are used including fingerprints, passwords, and others. One of the techniques that has attracted much attention is the use of human features, which has proven to be most effective because of the difficulties in impersonating human-related features. An example of a human-related attribute includes the electrical signal generated from the heart, mostly referred to as an Electrocardiogram (ECG) signal. The methods to extract features from ECG signals are time domain-based; however, the challenge with relying only on the time-domain or frequency-domain method is the inability to capture the intra-leading relationship of Variational Mode Decomposition signals. In this research, fusing multiple domains ECG feature and adaptive Variational Mode Decomposition approaches are utilized to mitigate the challenge of losing the intra-leading correlations of mode decompositions, which might reduce the robustness of encryption algorithms. The features extracted using the reconstructed signal have a mean (0.0004), standard deviation (0.0391), skewness (0.1562), and kurtosis (1.2205). Among the lightweight encryption methods considered, Chacha20 has a total execution time of 27µs. The study proposes a lightweight encryption technique based on the fused vector representation of extracted features to provide an encryption scheme in addition to a bio-inspired key generation technique for data encryption.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5851/11680072/a9578cda7055/sensors-24-07926-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5851/11680072/82df08176a42/sensors-24-07926-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5851/11680072/fa05cb410dc5/sensors-24-07926-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5851/11680072/0c8c1d55bd4d/sensors-24-07926-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5851/11680072/37f351905774/sensors-24-07926-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5851/11680072/2c80f41353a2/sensors-24-07926-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5851/11680072/f97d7a3daa4e/sensors-24-07926-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5851/11680072/512eb3f64fad/sensors-24-07926-g007a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5851/11680072/432c475f0871/sensors-24-07926-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5851/11680072/59fd88f1fc48/sensors-24-07926-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5851/11680072/43831b6f1f54/sensors-24-07926-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5851/11680072/4589c35c6b0d/sensors-24-07926-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5851/11680072/29597a644170/sensors-24-07926-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5851/11680072/231643940705/sensors-24-07926-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5851/11680072/a5ca0174e878/sensors-24-07926-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5851/11680072/4b1b479c78e6/sensors-24-07926-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5851/11680072/582498b28089/sensors-24-07926-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5851/11680072/55572d3c8c11/sensors-24-07926-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5851/11680072/a4d54458aa48/sensors-24-07926-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5851/11680072/93c493f8d5fb/sensors-24-07926-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5851/11680072/a9578cda7055/sensors-24-07926-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5851/11680072/82df08176a42/sensors-24-07926-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5851/11680072/fa05cb410dc5/sensors-24-07926-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5851/11680072/0c8c1d55bd4d/sensors-24-07926-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5851/11680072/37f351905774/sensors-24-07926-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5851/11680072/2c80f41353a2/sensors-24-07926-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5851/11680072/f97d7a3daa4e/sensors-24-07926-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5851/11680072/512eb3f64fad/sensors-24-07926-g007a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5851/11680072/432c475f0871/sensors-24-07926-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5851/11680072/59fd88f1fc48/sensors-24-07926-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5851/11680072/43831b6f1f54/sensors-24-07926-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5851/11680072/4589c35c6b0d/sensors-24-07926-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5851/11680072/29597a644170/sensors-24-07926-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5851/11680072/231643940705/sensors-24-07926-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5851/11680072/a5ca0174e878/sensors-24-07926-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5851/11680072/4b1b479c78e6/sensors-24-07926-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5851/11680072/582498b28089/sensors-24-07926-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5851/11680072/55572d3c8c11/sensors-24-07926-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5851/11680072/a4d54458aa48/sensors-24-07926-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5851/11680072/93c493f8d5fb/sensors-24-07926-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5851/11680072/a9578cda7055/sensors-24-07926-g020.jpg

相似文献

[1]
Fused Multi-Domains and Adaptive Variational Mode Decomposition ECG Feature Extraction for Lightweight Bio-Inspired Key Generation and Encryption.

Sensors (Basel). 2024-12-11

[2]
Securing Internet-of-Medical-Things networks using cancellable ECG recognition.

Sci Rep. 2024-5-13

[3]
Classification of myocardial infarction based on hybrid feature extraction and artificial intelligence tools by adopting tunable-Q wavelet transform (TQWT), variational mode decomposition (VMD) and neural networks.

Artif Intell Med. 2020-6

[4]
Deep attention model for arrhythmia signal classification based on multi-objective crayfish optimization algorithmic variational mode decomposition.

Sci Rep. 2025-2-11

[5]
ECG Data Encryption Then Compression Using Singular Value Decomposition.

IEEE J Biomed Health Inform. 2017-4-27

[6]
Variational mode decomposition based ECG denoising using non-local means and wavelet domain filtering.

Australas Phys Eng Sci Med. 2018-12

[7]
Compression and Encryption of Heterogeneous Signals for Internet of Medical Things.

IEEE J Biomed Health Inform. 2024-5

[8]
Variational Mode Extraction: A New Efficient Method to Derive Respiratory Signals from ECG.

IEEE J Biomed Health Inform. 2017-7-31

[9]
A denoising method for ECG signals based on CEEMDAN-TSO and stacked sparse autoencoders.

Comput Biol Med. 2025-4

[10]
ECG denoising and feature extraction techniques - a review.

J Med Eng Technol. 2021-11

本文引用的文献

[1]
Efficiency and Security Evaluation of Lightweight Cryptographic Algorithms for Resource-Constrained IoT Devices.

Sensors (Basel). 2024-6-20

[2]
Preliminary Study of Novel Bio-Crypto Key Generation Using Clustering-Based Binarization of ECG Features.

Sensors (Basel). 2024-2-28

[3]
Combination of frequency- and time-domain characteristics of the fibrillatory waves for enhanced prediction of persistent atrial fibrillation recurrence after catheter ablation.

Heliyon. 2024-1-30

[4]
Analysis of time-domain indices, frequency domain measures of heart rate variability derived from ECG waveform and pulse-wave-related HRV among overweight individuals: an observational study.

F1000Res. 2023

[5]
Electrocardiogram Monitoring Wearable Devices and Artificial-Intelligence-Enabled Diagnostic Capabilities: A Review.

Sensors (Basel). 2023-5-16

[6]
ECG signal feature extraction trends in methods and applications.

Biomed Eng Online. 2023-3-8

[7]
Nature-Inspired Search Method and Custom Waste Object Detection and Classification Model for Smart Waste Bin.

Sensors (Basel). 2022-8-18

[8]
Reversible Biosignal Steganography Approach for Authenticating Biosignals Using Extended Binary Golay Code.

IEEE J Biomed Health Inform. 2021-1

[9]
Heartbeats Based Biometric Random Binary Sequences Generation to Secure Wireless Body Sensor Networks.

IEEE Trans Biomed Eng. 2018-3-12

[10]
Highly Reliable Key Generation From Electrocardiogram (ECG).

IEEE Trans Biomed Eng. 2017-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索