Suppr超能文献

基于无线保真指纹识别和可解释人工智能的移动机器人定位

Mobile Robot Positioning with Wireless Fidelity Fingerprinting and Explainable Artificial Intelligence.

作者信息

Abacı Hüseyin, Seçkin Ahmet Çağdaş

机构信息

Computer Engineering Department, Engineering Faculty, Adnan Menderes University, 09100 Aydın, Türkiye.

出版信息

Sensors (Basel). 2024 Dec 12;24(24):7943. doi: 10.3390/s24247943.

Abstract

Wireless Fidelity (Wi-Fi) based positioning has gained popularity for accurate indoor robot positioning in indoor navigation. In daily life, it is a low-cost solution because Wi-Fi infrastructure is already installed in many indoor areas. In addition, unlike the Global Navigation Satellite System (GNSS), Wi-Fi is more suitable for use indoors because signal blocking, attenuation, and reflection restrictions create a unique pattern in places with many Wi-Fi transmitters, and more precise positioning can be performed than GNSS. This paper proposes a machine learning-based method for Wi-Fi-enabled robot positioning in indoor environments. The contributions of this research include comprehensive 3D position estimation, utilization of existing Wi-Fi infrastructure, and a carefully collected dataset for evaluation. The results indicate that the AdaBoost algorithm attains a notable level of accuracy, utilizing the dBm signal strengths from Wi-Fi access points distributed throughout a four-floor building. The mean average error (MAE) values obtained in three axes with the Adaptive Boosting algorithm are 0.044 on the -axis, 0.063 on the -axis, and 0.003 m on the -axis, respectively. In this study, the importance of various Wi-Fi access points was examined with explainable artificial intelligence methods, and the positioning performances obtained by using data from a smaller number of access points were examined. As a result, even when positioning was conducted with only seven selected Wi-Fi access points, the MAE value was found to be 0.811 for the -axis, 0.492 for the -axis, and 0.134 for the Z-axis, respectively.

摘要

基于无线保真(Wi-Fi)的定位在室内导航中实现精确的室内机器人定位方面越来越受欢迎。在日常生活中,它是一种低成本的解决方案,因为许多室内区域已经安装了Wi-Fi基础设施。此外,与全球导航卫星系统(GNSS)不同,Wi-Fi更适合在室内使用,因为信号阻挡、衰减和反射限制在有许多Wi-Fi发射器的地方会形成独特的模式,并且可以比GNSS进行更精确的定位。本文提出了一种基于机器学习的方法,用于在室内环境中对支持Wi-Fi的机器人进行定位。这项研究的贡献包括全面的三维位置估计、对现有Wi-Fi基础设施的利用以及用于评估的精心收集的数据集。结果表明,AdaBoost算法利用分布在一座四层建筑中的Wi-Fi接入点的dBm信号强度,达到了显著的精度水平。使用自适应增强算法在三个轴上获得的平均绝对误差(MAE)值,在x轴上为0.044米,在y轴上为0.063米,在z轴上为0.003米。在本研究中,使用可解释人工智能方法研究了各种Wi-Fi接入点的重要性,并研究了使用较少数量接入点的数据所获得的定位性能。结果发现,即使仅使用七个选定的Wi-Fi接入点进行定位,在x轴上的MAE值为0.811米,在y轴上为0.492米,在z轴上为0.134米。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2244/11678950/216fb5f32c4b/sensors-24-07943-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验