Suppr超能文献

基于Wi-Fi指纹定位中接入点欺骗的检测

Detection of Access Point Spoofing in the Wi-Fi Fingerprinting Based Positioning.

作者信息

Machaj Juraj, Safon Clément, Matúška Slavomír, Brída Peter

机构信息

Department of Multimedia and Information-Communication Technology, Faculty of Electrical Engineering and Information Technology, University of Zilina, Univerzitna 1, 01026 Zilina, Slovakia.

Télécom SudParis, 9 rue Charles Fourier, 91011 Evry Cedex, France.

出版信息

Sensors (Basel). 2024 Nov 28;24(23):7624. doi: 10.3390/s24237624.

Abstract

Indoor positioning based on Wi-Fi signals has gained a lot of attention lately. There are many advantages related to the use of Wi-Fi signals for positioning, including the availability of Wi-Fi access points in indoor environments and the integration of Wi-Fi transceivers into consumer devices. However, since Wi-Fi uses an unlicensed spectrum, anyone can create their own access points. Therefore, it is possible to affect the function of the localization system by spoofing signals from access points and thus alter positioning accuracy. Previously published works focused mainly on the evaluation of spoofing on localization systems and the detection of anomalies when updating the radio map. Spoofing mitigation solutions were proposed; however, their application to systems that use off-the-shelf items is not straightforward. In this paper filtering algorithms are proposed to minimize the impact of access point spoofing. The filtering was applied with a combination of the widely used K-Nearest Neighbours (KNN) localization algorithm and their performance is evaluated using the UJIIndoorLoc dataset. During the evaluation, the spoofing of Access Points was performed in two different scenarios and the number of spoofed access points ranged from 1 to 10. Based on the achieved results proposed SFKNN provided good detection of the spoofing and helped to reduce the mean localization error by 2-5 m, especially when the number of spoofed access points was higher.

摘要

基于Wi-Fi信号的室内定位近来备受关注。使用Wi-Fi信号进行定位有诸多优势,包括室内环境中Wi-Fi接入点的可用性以及Wi-Fi收发器可集成到消费设备中。然而,由于Wi-Fi使用的是免授权频谱,任何人都可以创建自己的接入点。因此,有可能通过伪造接入点的信号来影响定位系统的功能,进而改变定位精度。此前发表的作品主要集中在评估定位系统中的信号伪造以及更新无线电地图时异常情况的检测。虽然提出了减轻信号伪造的解决方案,但将其应用于使用现成设备的系统并非易事。本文提出了滤波算法,以尽量减少接入点信号伪造的影响。该滤波算法与广泛使用的K近邻(KNN)定位算法相结合应用,并使用UJIIndoorLoc数据集评估其性能。在评估过程中,在两种不同场景下进行了接入点的信号伪造,伪造接入点的数量从1到10不等。基于所取得的结果,所提出的SFKNN对信号伪造有良好的检测效果,并有助于将平均定位误差降低2至5米,特别是在伪造接入点数量较多时。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b42/11645021/166db6ca441c/sensors-24-07624-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验