Suppr超能文献

人类测试脑电图数据介导的人工智能多人交互系统

Humanity Test-EEG Data Mediated Artificial Intelligence Multi-Person Interactive System.

作者信息

Fang Fang, Gao Tanhao, Wu Jie

机构信息

College of Design and Innovation, Tongji University, Shanghai 200092, China.

出版信息

Sensors (Basel). 2024 Dec 12;24(24):7951. doi: 10.3390/s24247951.

Abstract

Artificial intelligence (AI) systems are widely applied in various industries and everyday life, particularly in fields such as virtual assistants, healthcare, and education. However, this paper highlights that existing research has often overlooked the philosophical and media aspects. To address this, we developed an interactive system called "Human Nature Test". In this context, "human nature" refers to emotion and consciousness, while "test" involves a critical analysis of AI technology and an exploration of the differences between humanity and technicality. Additionally, through experimental research and literature analysis, we found that the integration of electroencephalogram (EEG) data with AI systems is becoming a significant trend. The experiment involved 20 participants, with two conditions: C1 (using EEG data) and C2 (without EEG data). The results indicated a significant increase in immersion under the C1 condition, along with a more positive emotional experience. We summarized three design directions: enhancing immersion, creating emotional experiences, and expressing philosophical concepts. Based on these findings, there is potential for further developing EEG data as a medium to enrich interactive experiences, offering new insights into the fusion of technology and human emotion.

摘要

人工智能(AI)系统广泛应用于各个行业和日常生活中,尤其是在虚拟助手、医疗保健和教育等领域。然而,本文强调现有研究常常忽视了哲学和媒体方面。为解决这一问题,我们开发了一个名为“人性测试”的交互系统。在此背景下,“人性”指情感和意识,而“测试”涉及对人工智能技术的批判性分析以及对人性与技术性差异的探索。此外,通过实验研究和文献分析,我们发现脑电图(EEG)数据与人工智能系统的整合正成为一个显著趋势。该实验有20名参与者,设置了两个条件:C1(使用EEG数据)和C2(不使用EEG数据)。结果表明,在C1条件下沉浸感显著增强,同时情感体验更积极。我们总结了三个设计方向:增强沉浸感、创造情感体验以及表达哲学概念。基于这些发现,将EEG数据进一步开发为丰富交互体验的媒介具有潜力,为技术与人类情感的融合提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0556/11679976/f3540cdc225a/sensors-24-07951-g001.jpg

相似文献

1
Humanity Test-EEG Data Mediated Artificial Intelligence Multi-Person Interactive System.
Sensors (Basel). 2024 Dec 12;24(24):7951. doi: 10.3390/s24247951.
3
The Role of Artificial Intelligence in Decoding Speech from EEG Signals: A Scoping Review.
Sensors (Basel). 2022 Sep 15;22(18):6975. doi: 10.3390/s22186975.
4
Artificial intelligence for brain disease diagnosis using electroencephalogram signals.
J Zhejiang Univ Sci B. 2024 Oct 15;25(10):914-940. doi: 10.1631/jzus.B2400103.
5
Emotion recognition in EEG signals using deep learning methods: A review.
Comput Biol Med. 2023 Oct;165:107450. doi: 10.1016/j.compbiomed.2023.107450. Epub 2023 Sep 9.
6
A neural approach to the Turing Test: The role of emotions.
Neural Netw. 2025 Jul;187:107362. doi: 10.1016/j.neunet.2025.107362. Epub 2025 Mar 14.
8
DC-ASTGCN: EEG Emotion Recognition Based on Fusion Deep Convolutional and Adaptive Spatio-Temporal Graph Convolutional Networks.
IEEE J Biomed Health Inform. 2025 Apr;29(4):2471-2483. doi: 10.1109/JBHI.2024.3449083. Epub 2025 Apr 4.
9
FCAN-XGBoost: A Novel Hybrid Model for EEG Emotion Recognition.
Sensors (Basel). 2023 Jun 17;23(12):5680. doi: 10.3390/s23125680.
10
Attention-Based PSO-LSTM for Emotion Estimation Using EEG.
Sensors (Basel). 2024 Dec 21;24(24):8174. doi: 10.3390/s24248174.

本文引用的文献

1
Crowdsourcing neuroscience: Inter-brain coupling during face-to-face interactions outside the laboratory.
Neuroimage. 2021 Feb 15;227:117436. doi: 10.1016/j.neuroimage.2020.117436. Epub 2020 Oct 8.
2
Physiological regulation of thinking: brain-computer interface (BCI) research.
Prog Brain Res. 2006;159:369-91. doi: 10.1016/S0079-6123(06)59024-7.
3
Measuring emotion: the Self-Assessment Manikin and the Semantic Differential.
J Behav Ther Exp Psychiatry. 1994 Mar;25(1):49-59. doi: 10.1016/0005-7916(94)90063-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验