Data Science and Computational Intelligence Institute, University of Granada, Spain.
Data Science and Computational Intelligence Institute, University of Granada, Spain.
Comput Biol Med. 2023 Oct;165:107450. doi: 10.1016/j.compbiomed.2023.107450. Epub 2023 Sep 9.
Emotions are a critical aspect of daily life and serve a crucial role in human decision-making, planning, reasoning, and other mental states. As a result, they are considered a significant factor in human interactions. Human emotions can be identified through various sources, such as facial expressions, speech, behavior (gesture/position), or physiological signals. The use of physiological signals can enhance the objectivity and reliability of emotion detection. Compared with peripheral physiological signals, electroencephalogram (EEG) recordings are directly generated by the central nervous system and are closely related to human emotions. EEG signals have the great spatial resolution that facilitates the evaluation of brain functions, making them a popular modality in emotion recognition studies. Emotion recognition using EEG signals presents several challenges, including signal variability due to electrode positioning, individual differences in signal morphology, and lack of a universal standard for EEG signal processing. Moreover, identifying the appropriate features for emotion recognition from EEG data requires further research. Finally, there is a need to develop more robust artificial intelligence (AI) including conventional machine learning (ML) and deep learning (DL) methods to handle the complex and diverse EEG signals associated with emotional states. This paper examines the application of DL techniques in emotion recognition from EEG signals and provides a detailed discussion of relevant articles. The paper explores the significant challenges in emotion recognition using EEG signals, highlights the potential of DL techniques in addressing these challenges, and suggests the scope for future research in emotion recognition using DL techniques. The paper concludes with a summary of its findings.
情绪是日常生活的一个重要方面,在人类决策、计划、推理和其他心理状态中起着至关重要的作用。因此,它们被认为是人类互动的一个重要因素。人类的情绪可以通过多种来源来识别,例如面部表情、言语、行为(姿势/位置)或生理信号。使用生理信号可以提高情绪检测的客观性和可靠性。与外周生理信号相比,脑电图(EEG)记录直接由中枢神经系统产生,与人类情绪密切相关。EEG 信号具有很高的空间分辨率,有利于评估大脑功能,使其成为情绪识别研究中流行的模态。使用 EEG 信号进行情绪识别存在一些挑战,包括由于电极定位引起的信号可变性、信号形态的个体差异以及 EEG 信号处理缺乏通用标准。此外,需要从 EEG 数据中识别出用于情绪识别的适当特征,这需要进一步研究。最后,需要开发更强大的人工智能(AI),包括传统机器学习(ML)和深度学习(DL)方法,以处理与情绪状态相关的复杂和多样化的 EEG 信号。本文研究了 DL 技术在 EEG 信号情绪识别中的应用,并对相关文章进行了详细讨论。本文探讨了使用 EEG 信号进行情绪识别的重大挑战,强调了 DL 技术在解决这些挑战方面的潜力,并提出了使用 DL 技术进行情绪识别的未来研究范围。本文最后总结了研究结果。