Víg Levente, Zátonyi Anita, Csernyus Bence, Horváth Ágoston C, Bojtár Márton, Kele Péter, Madarász Miklós, Rózsa Balázs, Fürjes Péter, Hermann Petra, Hakkel Orsolya, Péter László, Fekete Zoltán
Research Group for Implantable Microsystems, Faculty of Information Technology & Bionics, Pázmány Péter Catholic University, H-1083 Budapest, Hungary.
Chemical Biology Research Group, Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary.
Sensors (Basel). 2024 Dec 14;24(24):7987. doi: 10.3390/s24247987.
The aim of this work is to incorporate lanthanide-cored upconversion nanoparticles (UCNP) into the surface of microengineered biomedical implants to create a spatially controlled and optically releasable model drug delivery device in an integrated fashion. Our approach enables silicone-based microelectrocorticography (ECoG) implants holding platinum/iridium recording sites to serve as a stable host of UCNPs. Nanoparticles excitable in the near-infrared (lower energy) regime and emitting visible (higher energy) light are utilized in a study. With the upconverted higher energy photons, we demonstrate the induction of photochemical (cleaving) reactions that enable the local release of specific dyes as a model system near the implant. The modified ECoG electrodes can be implanted in brain tissue to act as an uncaging system that releases small amounts of substance while simultaneously measuring the evoked neural response upon light activation. In this paper, several technological challenges like the surface modification of UCNPs, the immobilization of particles on the implantable platform, and measuring the stability of integrated UCNPs in in vitro and in vivo conditions are addressed in detail. Besides the chemical, mechanical, and optical characterization of the ready-to-use devices, the effect of nanoparticles on the original electrophysiological function is also evaluated. The results confirm that silicone-based brain-machine interfaces can be efficiently complemented with UCNPs to facilitate local model drug release.
这项工作的目的是将镧系元素为核心的上转换纳米颗粒(UCNP)整合到微工程生物医学植入物表面,以集成的方式创建一种空间可控且可光释放的模型药物递送装置。我们的方法使带有铂/铱记录位点的硅基微电极脑电图(ECoG)植入物能够作为UCNP的稳定宿主。在一项研究中使用了在近红外(低能量)区域可激发并发射可见光(高能量)的纳米颗粒。利用上转换产生的高能量光子,我们证明了光化学(裂解)反应的诱导,该反应能够在植入物附近局部释放特定染料作为模型系统。经过修饰的ECoG电极可以植入脑组织中,充当一种解笼系统,在释放少量物质的同时,还能测量光激活后诱发的神经反应。在本文中,详细探讨了几个技术挑战,如UCNP的表面修饰、颗粒在可植入平台上的固定以及在体外和体内条件下测量集成UCNP的稳定性。除了对即用型设备进行化学、机械和光学表征外,还评估了纳米颗粒对原始电生理功能的影响。结果证实,硅基脑机接口可以有效地与UCNP互补,以促进局部模型药物释放。
Mikrochim Acta. 2022-2-17
Phys Chem Chem Phys. 2017-9-13
Arch Pharm Res. 2020-1-24
Acta Biomater. 2017-3-16
ACS Appl Mater Interfaces. 2020-3-6
ACS Appl Mater Interfaces. 2024-9-11
Chem Commun (Camb). 2024-6-18
Proc Natl Acad Sci U S A. 2024-5-28
Front Bioeng Biotechnol. 2022-8-24