文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用集成上转换纳米颗粒通过微型脑机接口进行光控药物递送。

Optically Controlled Drug Delivery Through Microscale Brain-Machine Interfaces Using Integrated Upconverting Nanoparticles.

作者信息

Víg Levente, Zátonyi Anita, Csernyus Bence, Horváth Ágoston C, Bojtár Márton, Kele Péter, Madarász Miklós, Rózsa Balázs, Fürjes Péter, Hermann Petra, Hakkel Orsolya, Péter László, Fekete Zoltán

机构信息

Research Group for Implantable Microsystems, Faculty of Information Technology & Bionics, Pázmány Péter Catholic University, H-1083 Budapest, Hungary.

Chemical Biology Research Group, Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary.

出版信息

Sensors (Basel). 2024 Dec 14;24(24):7987. doi: 10.3390/s24247987.


DOI:10.3390/s24247987
PMID:39771721
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11680031/
Abstract

The aim of this work is to incorporate lanthanide-cored upconversion nanoparticles (UCNP) into the surface of microengineered biomedical implants to create a spatially controlled and optically releasable model drug delivery device in an integrated fashion. Our approach enables silicone-based microelectrocorticography (ECoG) implants holding platinum/iridium recording sites to serve as a stable host of UCNPs. Nanoparticles excitable in the near-infrared (lower energy) regime and emitting visible (higher energy) light are utilized in a study. With the upconverted higher energy photons, we demonstrate the induction of photochemical (cleaving) reactions that enable the local release of specific dyes as a model system near the implant. The modified ECoG electrodes can be implanted in brain tissue to act as an uncaging system that releases small amounts of substance while simultaneously measuring the evoked neural response upon light activation. In this paper, several technological challenges like the surface modification of UCNPs, the immobilization of particles on the implantable platform, and measuring the stability of integrated UCNPs in in vitro and in vivo conditions are addressed in detail. Besides the chemical, mechanical, and optical characterization of the ready-to-use devices, the effect of nanoparticles on the original electrophysiological function is also evaluated. The results confirm that silicone-based brain-machine interfaces can be efficiently complemented with UCNPs to facilitate local model drug release.

摘要

这项工作的目的是将镧系元素为核心的上转换纳米颗粒(UCNP)整合到微工程生物医学植入物表面,以集成的方式创建一种空间可控且可光释放的模型药物递送装置。我们的方法使带有铂/铱记录位点的硅基微电极脑电图(ECoG)植入物能够作为UCNP的稳定宿主。在一项研究中使用了在近红外(低能量)区域可激发并发射可见光(高能量)的纳米颗粒。利用上转换产生的高能量光子,我们证明了光化学(裂解)反应的诱导,该反应能够在植入物附近局部释放特定染料作为模型系统。经过修饰的ECoG电极可以植入脑组织中,充当一种解笼系统,在释放少量物质的同时,还能测量光激活后诱发的神经反应。在本文中,详细探讨了几个技术挑战,如UCNP的表面修饰、颗粒在可植入平台上的固定以及在体外和体内条件下测量集成UCNP的稳定性。除了对即用型设备进行化学、机械和光学表征外,还评估了纳米颗粒对原始电生理功能的影响。结果证实,硅基脑机接口可以有效地与UCNP互补,以促进局部模型药物释放。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c51/11680031/cdaa75755854/sensors-24-07987-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c51/11680031/be9bd5eaec18/sensors-24-07987-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c51/11680031/0ec2ceca488c/sensors-24-07987-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c51/11680031/7a080cf33022/sensors-24-07987-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c51/11680031/9d24a0295df1/sensors-24-07987-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c51/11680031/4a7f37ec6d09/sensors-24-07987-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c51/11680031/3ce2946b4a7a/sensors-24-07987-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c51/11680031/de29c16a10ef/sensors-24-07987-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c51/11680031/489b07f31ac3/sensors-24-07987-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c51/11680031/b05d528c01ce/sensors-24-07987-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c51/11680031/cdaa75755854/sensors-24-07987-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c51/11680031/be9bd5eaec18/sensors-24-07987-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c51/11680031/0ec2ceca488c/sensors-24-07987-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c51/11680031/7a080cf33022/sensors-24-07987-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c51/11680031/9d24a0295df1/sensors-24-07987-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c51/11680031/4a7f37ec6d09/sensors-24-07987-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c51/11680031/3ce2946b4a7a/sensors-24-07987-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c51/11680031/de29c16a10ef/sensors-24-07987-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c51/11680031/489b07f31ac3/sensors-24-07987-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c51/11680031/b05d528c01ce/sensors-24-07987-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c51/11680031/cdaa75755854/sensors-24-07987-g010.jpg

相似文献

[1]
Optically Controlled Drug Delivery Through Microscale Brain-Machine Interfaces Using Integrated Upconverting Nanoparticles.

Sensors (Basel). 2024-12-14

[2]
Engineered lanthanide-doped upconversion nanoparticles for biosensing and bioimaging application.

Mikrochim Acta. 2022-2-17

[3]
Near-infrared photochemistry at interfaces based on upconverting nanoparticles.

Phys Chem Chem Phys. 2017-9-13

[4]
Photoactivation of Diiodido-Pt(IV) Complexes Coupled to Upconverting Nanoparticles.

Mol Pharm. 2016-7-5

[5]
Emerging NIR light-responsive delivery systems based on lanthanide-doped upconverting nanoparticles.

Arch Pharm Res. 2020-1-24

[6]
Self-assembled photoadditives in polyester films allow stop and go chemical release.

Acta Biomater. 2017-3-16

[7]
Modularly Assembled Upconversion Nanoparticles for Orthogonally Controlled Cell Imaging and Drug Delivery.

ACS Appl Mater Interfaces. 2020-3-6

[8]
Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy.

Biomaterials. 2010-10-20

[9]
Solid optical tissue phantom tools based on upconverting nanoparticles for biomedical applications.

J Biomed Opt. 2023-3

[10]
Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging.

Chem Soc Rev. 2015-3-21

本文引用的文献

[1]
Unveiling the Potential of Surface Polymerized Drug Nanocrystals in Targeted Delivery.

ACS Appl Mater Interfaces. 2024-9-11

[2]
Anticancer nano-prodrugs with drug release triggered by intracellular dissolution and hydrogen peroxide response.

Chem Commun (Camb). 2024-6-18

[3]
Ketamine can produce oscillatory dynamics by engaging mechanisms dependent on the kinetics of NMDA receptors.

Proc Natl Acad Sci U S A. 2024-5-28

[4]
Stable "snow lantern-like" aggregates of silicon nanoparticles suitable as a drug delivery platform.

Nanoscale. 2024-5-23

[5]
Activating CD8 T Cells by Pt(IV) Prodrug-Based Nanomedicine and aPD-L1 Antibody for Enhanced Cancer Immunotherapy.

Adv Mater. 2024-5

[6]
Bioinspired claw-engaged and biolubricated swimming microrobots creating active retention in blood vessels.

Sci Adv. 2023-5-5

[7]
Hyaluronic acid-based nano drug delivery systems for breast cancer treatment: Recent advances.

Front Bioeng Biotechnol. 2022-8-24

[8]
Functionalization strategies of polymeric nanoparticles for drug delivery in Alzheimer's disease: Current trends and future perspectives.

Front Neurosci. 2022-8-4

[9]
Stability, dissolution, and cytotoxicity of NaYF-upconversion nanoparticles with different coatings.

Sci Rep. 2022-3-8

[10]
Hard polymeric porous microneedles on stretchable substrate for transdermal drug delivery.

Sci Rep. 2022-2-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索