Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139.
Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114.
Proc Natl Acad Sci U S A. 2024 May 28;121(22):e2402732121. doi: 10.1073/pnas.2402732121. Epub 2024 May 20.
Ketamine is an N-methyl-D-aspartate (NMDA)-receptor antagonist that produces sedation, analgesia, and dissociation at low doses and profound unconsciousness with antinociception at high doses. At high and low doses, ketamine can generate gamma oscillations (>25 Hz) in the electroencephalogram (EEG). The gamma oscillations are interrupted by slow-delta oscillations (0.1 to 4 Hz) at high doses. Ketamine's primary molecular targets and its oscillatory dynamics have been characterized. However, how the actions of ketamine at the subcellular level give rise to the oscillatory dynamics observed at the network level remains unknown. By developing a biophysical model of cortical circuits, we demonstrate how NMDA-receptor antagonism by ketamine can produce the oscillatory dynamics observed in human EEG recordings and nonhuman primate local field potential recordings. We have identified how impaired NMDA-receptor kinetics can cause disinhibition in neuronal circuits and how a disinhibited interaction between NMDA-receptor-mediated excitation and GABA-receptor-mediated inhibition can produce gamma oscillations at high and low doses, and slow-delta oscillations at high doses. Our work uncovers general mechanisms for generating oscillatory brain dynamics that differs from ones previously reported and provides important insights into ketamine's mechanisms of action as an anesthetic and as a therapy for treatment-resistant depression.
氯胺酮是一种 N-甲基-D-天冬氨酸(NMDA)受体拮抗剂,在低剂量下产生镇静、镇痛和分离作用,在高剂量下产生深度无意识和抗伤害感受作用。在高剂量和低剂量下,氯胺酮可以在脑电图(EEG)中产生伽马振荡(>25 Hz)。伽马振荡在高剂量下被慢δ振荡(0.1 至 4 Hz)打断。氯胺酮的主要分子靶标及其振荡动力学已得到表征。然而,氯胺酮在亚细胞水平的作用如何导致在网络水平观察到的振荡动力学仍然未知。通过开发皮质电路的生物物理模型,我们证明了氯胺酮对 NMDA 受体的拮抗作用如何产生在人类 EEG 记录和非人类灵长类动物局部场电位记录中观察到的振荡动力学。我们已经确定了 NMDA 受体动力学的损伤如何导致神经元电路的去抑制,以及 NMDA 受体介导的兴奋和 GABA 受体介导的抑制之间去抑制的相互作用如何在高剂量和低剂量下产生伽马振荡,以及在高剂量下产生慢δ振荡。我们的工作揭示了产生振荡脑动力学的一般机制,与以前报道的机制不同,并为氯胺酮作为麻醉剂和治疗耐药性抑郁症的作用机制提供了重要的见解。