Cao Jiaxin, Yi Huiyue, Zhang Wuxiong, Xu Hui
Key Laboratory of Science and Technology on Micro-System, Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences, Shanghai 200050, China.
University of Chinese Academy of Sciences, Beijing 100049, China.
Sensors (Basel). 2024 Dec 14;24(24):8000. doi: 10.3390/s24248000.
Frequency-modulated continuous-wave (FMCW) radar is used to extract range and velocity information from the beat signal. However, the traditional joint range-velocity estimation algorithms often experience significant performances degradation under low signal-to-noise ratio (SNR) conditions. To address this issue, this paper proposes a novel approach utilizing the complementary ensemble empirical mode decomposition (CEEMD) combined with singular value decomposition (SVD) to reconstruct the beat signal prior to applying the FFT-Root-MUSIC algorithm for joint range and velocity estimation. This results in a novel joint range-velocity estimation algorithm termed as the CEEMD-SVD-FFT-Root-MUSIC (CEEMD-SVD-FRM) algorithm. First, the beat signal contaminated with additive white Gaussian noise is decomposed using CEEMD, and an appropriate autocorrelation coefficient threshold is determined to select the highly correlated intrinsic mode functions (IMFs). Then, the SVD is applied to the selected highly correlated IMFs for denoising the beat signal. Subsequently, the denoised IMFs and signal residuals are combined to reconstruct the beat signal. Finally, the FFT-Root-MUSIC algorithm is applied to the reconstructed beat signal to estimate both the range and Doppler frequencies, which are then used to calculate the range and velocity estimates of the targets. The proposed CEEMD-SVD-FRM algorithm is validated though simulations and experiments, demonstrating significant improvement in the robustness and accuracy of range and velocity estimates for the FMCW radar due to the effective denoising of the reconstructed beat signal. Moreover, it substantially outperforms the traditional methods in low SNR environments.
调频连续波(FMCW)雷达用于从拍频信号中提取距离和速度信息。然而,传统的联合距离-速度估计算法在低信噪比(SNR)条件下往往会出现显著的性能下降。为了解决这个问题,本文提出了一种新颖的方法,利用互补总体经验模态分解(CEEMD)结合奇异值分解(SVD)在应用FFT-Root-MUSIC算法进行联合距离和速度估计之前对拍频信号进行重构。这产生了一种新颖的联合距离-速度估计算法,称为CEEMD-SVD-FFT-Root-MUSIC(CEEMD-SVD-FRM)算法。首先,使用CEEMD对受加性高斯白噪声污染的拍频信号进行分解,并确定一个合适的自相关系数阈值来选择高度相关的本征模态函数(IMF)。然后,将SVD应用于所选的高度相关的IMF以对拍频信号进行去噪。随后,将去噪后的IMF和信号残差组合起来重构拍频信号。最后,将FFT-Root-MUSIC算法应用于重构后的拍频信号以估计距离和多普勒频率,然后用于计算目标的距离和速度估计值。通过仿真和实验验证了所提出的CEEMD-SVD-FRM算法,结果表明由于重构拍频信号的有效去噪,FMCW雷达的距离和速度估计的鲁棒性和准确性有显著提高。此外,在低信噪比环境下,它大大优于传统方法。