Suppr超能文献

基于K空间谱的精密加工表面几何分布误差建模的误差分离方法

Error Separation Method for Geometric Distribution Error Modeling of Precision Machining Surfaces Based on K-Space Spectrum.

作者信息

Sheng Zhichao, Xiong Jian, Zhang Zhijing, Su Taiyu, Zhang Min, Saren Qimuge, Chen Xiao

机构信息

School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China.

EPSRC Future Metrology Hub, University of Huddersfield, Huddersfield HD1 3DH, UK.

出版信息

Sensors (Basel). 2024 Dec 18;24(24):8067. doi: 10.3390/s24248067.

Abstract

The geometric error distributed on components' contact surfaces is a critical factor affecting assembly accuracy and precision instrument stability. Effective error separation methods can improve model accuracy, thereby aiding in performance prediction and process optimization. Here, an error separation method for geometric distribution error modeling for precision machining surfaces based on the K-space spectrum is proposed. To determine the boundary of systematical error and random error, we used a cruciform boundary line method based on the K-space spectrum, achieving the optimal separation of the two with frequency difference. The effectiveness of the method was experimentally verified using two sets of machined surfaces. By comparing with current common random error filtering methods, the outstanding role of the proposed error separation method in separating random error and preserving processing features has been verified.

摘要

分布在零件接触面上的几何误差是影响装配精度和精密仪器稳定性的关键因素。有效的误差分离方法可以提高模型精度,从而有助于性能预测和工艺优化。在此,提出了一种基于K空间谱的精密加工表面几何分布误差建模的误差分离方法。为了确定系统误差和随机误差的边界,我们使用了基于K空间谱的十字形边界线方法,通过频率差实现了两者的最优分离。利用两组加工表面对该方法的有效性进行了实验验证。通过与当前常见的随机误差滤波方法进行比较,验证了所提出的误差分离方法在分离随机误差和保留加工特征方面的突出作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf91/11679476/a15d76f2f887/sensors-24-08067-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验