Suppr超能文献

机器人应用中的 RANSAC:综述。

RANSAC for Robotic Applications: A Survey.

机构信息

Department of Computer Science and Artificial Intelligence, University of the Basque Country, 20018 Donostia-San Sebastián, Spain.

Department of Languages and Information Systems, University of the Basque Country, 20018 Donostia-San Sebastián, Spain.

出版信息

Sensors (Basel). 2022 Dec 28;23(1):327. doi: 10.3390/s23010327.

Abstract

Random Sample Consensus, most commonly abbreviated as RANSAC, is a robust estimation method for the parameters of a model contaminated by a sizable percentage of outliers. In its simplest form, the process starts with a sampling of the minimum data needed to perform an estimation, followed by an evaluation of its adequacy, and further repetitions of this process until some stopping criterion is met. Multiple variants have been proposed in which this workflow is modified, typically tweaking one or several of these steps for improvements in computing time or the quality of the estimation of the parameters. RANSAC is widely applied in the field of robotics, for example, for finding geometric shapes (planes, cylinders, spheres, etc.) in cloud points or for estimating the best transformation between different camera views. In this paper, we present a review of the current state of the art of RANSAC family methods with a special interest in applications in robotics.

摘要

随机抽样一致算法,通常缩写为 RANSAC,是一种强大的估计模型参数的方法,适用于被大量异常值污染的数据。在最简单的形式中,该过程从采样最小的数据开始,以执行估计,然后评估其充分性,并进一步重复这个过程,直到满足某些停止标准。已经提出了多种变体,其中修改了这个工作流程,通常是为了在计算时间或参数估计的质量方面进行改进,调整一个或几个步骤。RANSAC 在机器人领域得到了广泛的应用,例如,用于在云点中找到几何形状(平面、圆柱、球体等),或用于估计不同相机视图之间的最佳变换。在本文中,我们对 RANSAC 家族方法的最新技术进行了综述,特别关注机器人应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a9d/9824669/ab6f397ddbf9/sensors-23-00327-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验