Wang Chenyang, Li Xiang, Ni Erli, Yang Wenxuan, Zeng Ziyue, Liu Haiyang, Cheng Tingting, Yu Ting, Zeng Mengqi, Fu Lei
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China.
ACS Nano. 2025 Jan 21;19(2):2468-2474. doi: 10.1021/acsnano.4c13483. Epub 2025 Jan 7.
In atomically thin two-dimensional (2D) materials, grain boundaries (GBs) are ubiquitous, displaying a profound effect on the electronic structure of the host lattice. The random configuration of atoms within GBs introduces an arbitrary and unpredictable local electronic environment, which may hazard electron transport. Herein, by utilizing the Pt single-atom chains with an ultimate one-dimensional (1D) feature (width of a single atom and length up to tens of nanometers), we realized the suture of the electron pathway at GBs of diversified transition metal dichalcogenides (TMDCs). Theoretical calculations reveal that the construction of Pt single-atom sutures (SAS) prompts the emergence of electronic states proximal to the Fermi level, effectively modulating the transformation of the electronic structure from semiconductivity to metallicity. This transformation underscores the pivotal role of Pt SAS in reconfiguring the electron pathway. Benefiting from this, the Pt SAS-MoS emerges as an excellent catalyst, exhibiting an overpotential of 41 mV at 10 mA cm and a Tafel slope of 54 mV dec in hydrogen evolution reaction. Our results offer an understanding of the electron conduction pathway contributed by ultraordered atomic arrangement and the innovative mechanisms for future potential catalysts with an optimized architecture.
在原子级薄的二维(2D)材料中,晶界无处不在,对主体晶格的电子结构产生深远影响。晶界内原子的随机排列引入了任意且不可预测的局部电子环境,这可能会阻碍电子传输。在此,通过利用具有终极一维(1D)特征(单个原子宽度且长度可达数十纳米)的铂单原子链,我们实现了多种过渡金属二硫属化物(TMDCs)晶界处电子路径的缝合。理论计算表明,铂单原子缝合线(SAS)的构建促使费米能级附近出现电子态,有效调节了电子结构从半导体性到金属性的转变。这种转变凸显了铂SAS在重新配置电子路径中的关键作用。得益于此,铂SAS-MoS成为一种优异的催化剂,在析氢反应中,在10 mA cm时过电位为41 mV,塔菲尔斜率为54 mV dec。我们的结果为超有序原子排列所贡献的电子传导路径以及具有优化结构的未来潜在催化剂的创新机制提供了理解。