Suppr超能文献

A Phenomenological Perturbation-like Approach for Prediction of Molecular Properties in Large Libraries of Polysubstituted Derivatives: Application to Molecular Solar Thermal Systems.

作者信息

Peinado Alba, Jodra Alejandro, Cebrián Claudia, Frutos Luis Manuel

机构信息

Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, E- 28871 Alcalá de Henares, Madrid, Spain.

Instituto de Investigación Química "Andrés M. del Río", Universidad de Alcalá, E- 28871 Alcalá de Henares, Madrid, Spain.

出版信息

J Chem Theory Comput. 2025 Apr 8;21(7):3374-3381. doi: 10.1021/acs.jctc.4c01483. Epub 2025 Jan 8.

Abstract

The prediction of a specific chemical property across a vast library of derivatives represents a formidable challenge. Conventional computational methodologies typically rely on brute-force calculations involving the computation of the property of interest for the entire library or a significant subset. In this study, we present a novel phenomenological approach to address this challenge, employing a perturbation theory-like framework to describe substituent effects. This proposed methodology has the potential to forecast the molecular properties of millions of compounds based on information derived from just a few hundred. This method is applied to the design of molecular solar thermal (MOST) systems, which are devices permitting harvesting solar energy and storing it in a chemical form. The optimization of MOST performance is a critical issue in practical applications of this technology, so exploration of large libraries of derivatives at low computational cost is an interesting approach to tackle the problem. To accomplish this objective, we explore the functionalization of the norbornadiene/quadricyclane (NBD/QC) system utilizing the proposed perturbational approach predicting the energy of 350 derivatives from small sets of 5 and 50 calculated compounds.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/971c/11983710/4fc9416741c4/ct4c01483_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验