Zhu Longji, Yang Yunan, Xu Fei, Lu Xinyu, Shuai Mingrui, An Zhulin, Chen Xiaomeng, Li Hu, Martin Francis L, Vikesland Peter J, Ren Bin, Tian Zhong-Qun, Zhu Yong-Guan, Cui Li
Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
College of Life Science, Northeast Agricultural University, Harbin 150030, China.
Sci Adv. 2025 Jan 10;11(2):eadp7991. doi: 10.1126/sciadv.adp7991. Epub 2025 Jan 8.
Pathogenic bioaerosols are critical for outbreaks of airborne disease; however, rapidly and accurately identifying pathogens directly from complex air environments remains highly challenging. We present an advanced method that combines open-set deep learning (OSDL) with single-cell Raman spectroscopy to identify pathogens in real-world air containing diverse unknown indigenous bacteria that cannot be fully included in training sets. To test and further enhance identification, we constructed the Raman datasets of aerosolized bacteria. Through optimizing OSDL algorithms and training strategies, Raman-OSDL achieves 93% accuracy for five target airborne pathogens, 84% accuracy for untrained air bacteria, and 36% reduction in false positive rates compared to conventional close-set algorithms. It offers a high detection sensitivity down to 1:1000. When applied to real air containing >4600 bacterial species, our method accurately identifies single or multiple pathogens simultaneously within an hour. This single-cell tool advances rapidly surveilling pathogens in complex environments to prevent infection transmission.
致病性生物气溶胶是空气传播疾病爆发的关键因素;然而,直接从复杂的空气环境中快速准确地识别病原体仍然极具挑战性。我们提出了一种先进的方法,该方法将开放集深度学习(OSDL)与单细胞拉曼光谱相结合,以识别实际空气中的病原体,这些空气中含有多种未知的本地细菌,无法完全包含在训练集中。为了测试并进一步提高识别能力,我们构建了雾化细菌的拉曼数据集。通过优化OSDL算法和训练策略,拉曼-OSDL对五种目标空气传播病原体的识别准确率达到93%,对未训练的空气细菌的识别准确率达到84%,与传统的封闭集算法相比,误报率降低了36%。它具有低至1:1000的高检测灵敏度。当应用于含有超过4600种细菌的实际空气时,我们的方法能在一小时内准确地同时识别单一或多种病原体。这种单细胞工具推动了在复杂环境中对病原体的快速监测,以防止感染传播。