Suppr超能文献

利用激光镊子拉曼光谱和深度学习技术在单细胞水平上快速准确地鉴定病原菌。

Rapid and accurate identification of pathogenic bacteria at the single-cell level using laser tweezers Raman spectroscopy and deep learning.

机构信息

Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing, China.

School of Science, Beijing University of Posts and Telecommunications, Beijing, China.

出版信息

J Biophotonics. 2022 Jul;15(7):e202100312. doi: 10.1002/jbio.202100312. Epub 2022 Mar 1.

Abstract

We report a new method for the rapid identification of pathogenic bacterial species at the single-cell level that combines laser tweezers Raman spectroscopy (LTRS) with deep learning (DL). LTRS can accurately measure single-cell Raman spectra (scRS) without destroying and labeling cells. Based on the scRS data, DL rapidly and accurately identifies pathogenic bacteria. We measured scRS of 15 species bacteria using homemade LTRS. For each species, approximately, 160 cells from three different patients were measured, one patient's data were used as test set, and the rest after being augmented was used as training set. A residual network (ResNet) model, trained on the augmented training set, achieved an accuracy of 94.53% on the test set. Moreover, we applied gradient-weighted class activation mapping to visualize the proposed model. Finally, we demonstrated the advantages of ResNet over traditional machine-learning algorithms.

摘要

我们报告了一种新的方法,用于在单细胞水平上快速鉴定病原菌,该方法将激光镊子拉曼光谱(LTRS)与深度学习(DL)相结合。LTRS 可以在不破坏和标记细胞的情况下准确测量单细胞拉曼光谱(scRS)。基于 scRS 数据,DL 可以快速准确地鉴定病原菌。我们使用自制的 LTRS 测量了 15 种细菌的 scRS。对于每种细菌,大约从三名不同的患者中测量了 160 个细胞,一名患者的数据作为测试集,其余经过扩充的数据作为训练集。在扩充后的训练集上训练的残差网络(ResNet)模型在测试集上的准确率达到了 94.53%。此外,我们应用梯度加权类激活映射来可视化所提出的模型。最后,我们证明了 ResNet 优于传统的机器学习算法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验