Roussel Théotime, Hubas Cédric, Halary Sébastien, Chynel Mathias, Duval Charlotte, Cadoret Jean-Paul, Meziane Tarik, Vernès Léa, Yéprémian Claude, Bernard Cécile, Marie Benjamin
UMR7245 MCAM MNHN-CNRS, Muséum National d'Histoire Naturelle, Paris, France.
Algama, Paris, France.
Microbiol Spectr. 2025 Feb 4;13(2):e0190124. doi: 10.1128/spectrum.01901-24. Epub 2025 Jan 8.
can colonize a wide variety of environments (e.g., freshwater, brackish, alkaline, or alkaline-saline water) and develop dominant and even permanent blooms that overshadow and limit the diversity of adjacent phototrophs, especially in alkaline and saline environments. Previous phylogenomic analysis of allowed us to distinguish two major phylogenetic clades (I and II) but failed to clearly segregate strains according to their respective habitats in terms of salinity or biogeography. In the present work, we attempted to determine whether displays metabolic signatures specific to its different habitats, particularly brackish and alkaline-saline ecosystems. The impact of accessory gene repertoires on respective chemical adaptations was also determined. In complement of our previous phylogenomic investigation of (Roussel et al., 2023), we develop a specific analysis of the metabolomic diversity of 93 strains of , grown under standardized lab culture conditions. Overall, this original work showed distinct chemical fingerprints that were correlated with the respective biogeographic origins of the strains. The molecules that most distinguished the different geographic groups were sugars, lipids, peptides, photosynthetic pigments, and antioxidants. Interestingly, these molecular enrichments might represent consequent adaptations to conditions of salinity, light, and oxidative stress in their respective sampling environments. Although the genes specifically involved in the production of these components remain unknown, we hypothesized that within extreme environments, such as those colonized by , a large set of flexible genes could support the production of peculiar metabolite sets providing remarkable adaptations to specific local environmental conditions.
are ubiquitous cyanobacteria with remarkable adaptive strategies allowing them to colonize and dominate a wide range of alkaline-saline environments worldwide. Phylogenomic analysis of revealed two distinct major phylogenetic clades but failed to clearly segregate strains according to their habitats in terms of salinity or biogeography. We hypothesized that the genes found within this variable portion of the genome of these clades could be involved in the adaptation of to local environmental conditions. In the present paper, we attempted to determine whether displayed metabolic signatures specific to its different habitats. We also sought to understand the impact of the accessory gene repertoire on respective chemical adaptations.
能够在多种环境中定殖(例如淡水、微咸水、碱性或碱性盐水),并形成占主导地位甚至永久性的水华,这些水华会遮蔽并限制相邻光合生物的多样性,尤其是在碱性和盐性环境中。先前对[具体物种名称未给出]的系统发育基因组分析使我们能够区分两个主要的系统发育分支(I和II),但未能根据盐度或生物地理学方面的各自栖息地清楚地分离菌株。在本研究中,我们试图确定[具体物种名称未给出]是否表现出特定于其不同栖息地的代谢特征,特别是微咸水和碱性盐水生态系统。还确定了辅助基因库对各自化学适应性的影响。作为我们先前对[具体物种名称未给出]的系统发育基因组研究(Roussel等人,2023年)的补充,我们对在标准化实验室培养条件下生长的93株[具体物种名称未给出]的代谢组多样性进行了特定分析。总体而言,这项原创研究显示了与菌株各自生物地理起源相关的独特化学指纹。最能区分不同[具体物种名称未给出]地理群体的分子是糖类、脂质、肽类、光合色素和抗氧化剂。有趣的是,这些分子富集可能代表了对其各自采样环境中的盐度、光照和氧化应激条件的相应适应。尽管具体参与这些成分产生的基因仍然未知,但我们假设在极端环境中,例如被[具体物种名称未给出]定殖的环境,大量灵活的基因可以支持产生特殊的代谢物组,从而对特定的当地环境条件提供显著的适应性。
[具体物种名称未给出]是无处不在的蓝细菌,具有显著的适应性策略,使其能够在全球范围内的各种碱性盐性环境中定殖并占据主导地位。对[具体物种名称未给出]的系统发育基因组分析揭示了两个不同的主要系统发育分支,但未能根据盐度或生物地理学方面的栖息地清楚地分离菌株。我们假设在这些分支基因组的可变部分中发现的基因可能参与了[具体物种名称未给出]对当地环境条件的适应。在本文中,我们试图确定[具体物种名称未给出]是否表现出特定于其不同栖息地的代谢特征。我们还试图了解辅助基因库对各自化学适应性的影响。